scholarly journals Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region

2019 ◽  
Vol 11 (16) ◽  
pp. 4284 ◽  
Author(s):  
Vassiliki Varela ◽  
Diamando Vlachogiannis ◽  
Athanasios Sfetsos ◽  
Stelios Karozis ◽  
Nadia Politi ◽  
...  

Fire occurrence and behaviour in Mediterranean-type ecosystems strongly depend on the air temperature and wind conditions, the amount of fuel load and the drought conditions that drastically increase flammability, particularly during the summer period. In order to study the fire danger due to climate change for these ecosystems, the meteorologically based Fire Weather Index (FWI) can be used. The Fire Weather Index (FWI) system, which is part of the Canadian Forest Fire Danger Rating System (CFFDRS), has been validated and recognized worldwide as one of the most trusted and important indicators for meteorological fire danger mapping. A number of FWI system components (Fire Weather Index, Drought Code, Initial Spread Index and Fire Severity Rating) were estimated and analysed in the current study for the Mediterranean area of France. Daily raster-based data-sets for the fire seasons (1st May–31st October) of a historic and a future time period were created for the study area based on representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios, outputs of CNRM-SMHI and MPI-SMHI climate models. GIS spatial analyses were applied on the series of the derived daily raster maps in order to provide a number of output maps for the study area. The results portray various levels of changes in fire danger, in the near future, according to the examined indices. Number of days with high and very high FWI values were found to be doubled compared to the historical period, in particular in areas of the Provence-Alpes-Côte d’Azur (PACA) region and Corsica. The areas with high Initial Spread Index and Seasonal Spread Index values increased as well, forming compact zones of high fire danger in the southern part of the study area, while the Drought Code index did not show remarkable changes. The current study on the evolution of spatial and temporal distribution of forest fire danger due to climate change can provide important knowledge to the decision support process for prevention and management policies of forest fires both at a national and EU level.

2019 ◽  
Vol 3 (11) ◽  
pp. 25-40 ◽  
Author(s):  
Lourdes Villers-Ruiz ◽  
Emilio Chuvieco ◽  
Inmaculada Aguado

Entre los sistemas de alerta temprana de incendios forestales destaca el desarrollado por el Servicio Forestal de Canadá, denominado Fire Weather Index (FWI). Con el fin de contribuir a la creación de un sistema de alerta temprana, se utilizó este índice para determinar las condiciones de peligro a incendios en el Parque Nacional Malinche a partir de una serie de datos diarios de enero 2004 a octubre 2009 de cinco estaciones meteorológicas automáticas instaladas en el parque a una altitud de 3,000 m, se hicieron los cálculos de los elementos que contiene el índice; para ello, se empleó la versión automatizada del Canadian Forest Fire Danger Rating System. Se realizaron correlaciones y se crearon cuatro categorías con los valores de los componentes, según la frecuencia de incendios y el área siniestrada. También, se señalaron, los valores de temperatura máxima y mínima, humedad relativa y lluvia por categoría. Se constituyeron los umbrales mínimos de gran peligrosidad a incendios para cada uno de los elementos. En el caso del código de humedad de los combustibles finos, el umbral se estableció en 80 puntos; de superarse este valor, el número de incendios por día se incrementa sustancialmente. El código de sequía, el Índice de dispersión inicial del fuego; así como, el Índice acumulado fueron los más significativos en relación a la frecuencia de incendios, por lo que se calculó la probabilidad de estos eventos, para ciertos intervalos de los elementos considerados.


2014 ◽  
Vol 14 (6) ◽  
pp. 1477-1490 ◽  
Author(s):  
A. Venäläinen ◽  
N. Korhonen ◽  
O. Hyvärinen ◽  
N. Koutsias ◽  
F. Xystrakis ◽  
...  

Abstract. Understanding how fire weather danger indices changed in the past and how such changes affected forest fire activity is important in a changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis data sets, ERA-40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960–2012. Additionally, we used national forest fire statistics from Greece, Spain and Finland to examine the relationship between fire danger and fires. There is no obvious trend in fire danger for the time period covered by ERA-40 (1960–1999), whereas for the period 1980–2012 covered by ERA Interim, the mean FWI shows an increasing trend for southern and eastern Europe which is significant at the 99% confidence level. The cross correlations calculated at the national level in Greece, Spain and Finland between total area burned and mean FWI of the current season is of the order of 0.6, demonstrating the extent to which the current fire-season weather can explain forest fires. To summarize, fire risk is multifaceted, and while climate is a major determinant, other factors can contribute to it, either positively or negatively.


2014 ◽  
Vol 23 (2) ◽  
pp. 185 ◽  
Author(s):  
Xiao-rui Tian ◽  
Feng-jun Zhao ◽  
Li-fu Shu ◽  
Ming-yu Wang

This paper predicts future changes in fire danger and the fire season in the current century for south-western China under two different climate change scenarios. The fire weather index (FWI) system calculated from daily outputs of a regional climate model with a horizontal resolution of 50×50km was used to assess fire danger. Temperature and precipitation demonstrated a gradually increasing trend for the future. Forest fire statistics for 1987–2011 revealed that the FWI, initial spread index and seasonal severity rating were significantly related to the number of forest fires between 100 and 1000ha in size. Over three future periods, the FWI component indices will increase greatly. The mean FWI value will increase by 0.83–1.85, 1.83–2.91 and 3.33–3.97 in the periods 2011–2040, 2041–2070 and 2071–2100. The regions with predicted FWI increases are mainly in central and south-eastern China. The fire season (including days with high, very high and extreme fire danger ratings) will be prolonged by 9–13, 18–21 and 28–31 days over these periods. This fire season extension will mainly be due to days with an extreme fire danger rating. Considering predicted future changes in the forest fire danger rating and the fire season, it is suggested that climate change adaptation measures be implemented.


2016 ◽  
Vol 16 (5) ◽  
pp. 1217-1237 ◽  
Author(s):  
Mark C. de Jong ◽  
Martin J. Wooster ◽  
Karl Kitchen ◽  
Cathy Manley ◽  
Rob Gazzard ◽  
...  

Abstract. Wildfires in the United Kingdom (UK) pose a threat to people, infrastructure and the natural environment. During periods of particularly fire-prone weather, wildfires can occur simultaneously across large areas, placing considerable stress upon the resources of fire and rescue services. Fire danger rating systems (FDRSs) attempt to anticipate periods of heightened fire risk, primarily for early-warning and preparedness purposes. The UK FDRS, termed the Met Office Fire Severity Index (MOFSI), is based on the Fire Weather Index (FWI) component of the Canadian Forest FWI System. The MOFSI currently provides daily operational mapping of landscape fire danger across England and Wales using a simple thresholding of the final FWI component of the Canadian FWI System. However, it is known that the system has scope for improvement. Here we explore a climatology of the six FWI System components across the UK (i.e. extending to Scotland and Northern Ireland), calculated from daily 2km × 2km gridded numerical weather prediction data and supplemented by long-term meteorological station observations. We used this climatology to develop a percentile-based calibration of the FWI System, optimised for UK conditions. We find this approach to be well justified, as the values of the "raw" uncalibrated FWI components corresponding to a very "extreme" (99th percentile) fire danger situation vary by more than an order of magnitude across the country. Therefore, a simple thresholding of the uncalibrated component values (as is currently applied in the MOFSI) may incur large errors of omission and commission with respect to the identification of periods of significantly elevated fire danger. We evaluate our approach to enhancing UK fire danger rating using records of wildfire occurrence and find that the Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and FWI components of the FWI System generally have the greatest predictive skill for landscape fire activity across Great Britain, with performance varying seasonally and by land cover type. At the height of the most recent severe wildfire period in the UK (2 May 2011), 50 % of all wildfires occurred in areas where the FWI component exceeded the 99th percentile. When all wildfire events during the 2010–2012 period are considered, the 75th, 90th and 99th percentiles of at least one FWI component were exceeded during 85, 61 and 18 % of all wildfires respectively. Overall, we demonstrate the significant advantages of using a percentile-based calibration approach for classifying UK fire danger, and believe that our findings provide useful insights for future development of the current operational MOFSI UK FDRS.


2011 ◽  
Vol 20 (8) ◽  
pp. 963 ◽  
Author(s):  
Xiaorui Tian ◽  
Douglas J. McRae ◽  
Jizhong Jin ◽  
Lifu Shu ◽  
Fengjun Zhao ◽  
...  

The Canadian Forest Fire Weather Index (FWI) system was evaluated for the Daxing'anling region of northern China for the 1987–2006 fire seasons. The FWI system reflected the regional fire danger and could be effectively used there in wildfire management. The various FWI system components were classified into classes (i.e. low to extreme) for fire conditions found in the region. A total of 81.1% of the fires occurred in the high, very high and extreme fire danger classes, in which 73.9% of the fires occurred in the spring (0.1, 9.5, 33.3 and 33.1% in March, April, May and June). Large wildfires greater than 200 ha in area (16.7% of the total) burnt 99.2% of the total burnt area. Lightning was the main ignition source for 57.1% of the total fires. Result show that forest fires mainly occurred in deciduous coniferous forest (61.3%), grass (23.9%) and deciduous broad leaved forest (8.0%). A bimodal fire season was detected, with peaks in May and October. The components of FWI system were good indicators of fire danger in the Daxing'anling region of China and could be used to build a working fire danger rating system for the region.


2021 ◽  
Author(s):  
Padraig Flattery ◽  
Klara Finkele ◽  
Paul Downes ◽  
Ferdia O'Leary ◽  
Ciaran Nugent

<p>Since 2006 the Canadian Forest Fire Weather Index System (FWI) has been used operationally at Met Éireann to predict the risk of forest fires in Ireland (Walsh, S, 2006). Although only around 11% or ca 770,000 ha of the total land area of Ireland is afforested, there are also large areas of open mountain and peatlands that are covered in grasses, dwarfshrub and larger woody shrub type vegetation which can provide ready fuel for spring wildfires, when suitable conditions arise. Following winter, much of this vegetation is either dead or has a very low live moisture content, and the flammability of this vegetation can be readily influenced by prevailing weather, most especially following prolonged dry periods. The Department of Agriculture, Food and Marine is the Forest Protection authority in Ireland and issues Fire Danger Notices as part of this work. These notices permit improved preparedness for fire responses and are based on information provided by Met Éireann on the current status of FWI and FWI components using observation data at synoptic stations and the predicted FWI for the next five days ahead based on numerical weather prediction input data.</p><p>The FWI is based on</p><ul><li>three different types of forest fuel, ie how quickly these dry out/get rewetted. These are the Fine Fuels Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC).</li> <li>components based on fire behaviour: the Initial Spread Index (ISI), the Build-up Index (BUI), and the Fire Weather Index (FWI) which represents fire intensity as energy output rate per unit length of fire front. It is then used to determine the Daily Severity Rating (DSR) of the fire danger. </li> </ul><p>Of these components, the FFMC and ISI components have been found to provide the most accurate indication of risk under Irish conditions, based on the fuels involved and ignition patterns observed to date.</p><p>The DSR was based on a climatology of 1971 to 2005 at the time of operational implantation of the FWI at Met Éireann. An updated climatology based on the new reference period of 1990 to 2020 will be shown as well as the change of the 98 percentiles of extreme rating using this new reference period.  </p><p><strong>Walsh, S.</strong> “Implementation in Ireland of the Canadian Forest Fire Weather Index System.” In <em>Making Science Work on the Farm. A Workshop on Decision Support Systems for Irish Agriculture</em>, 120–126. Dublin: AGMET, 2007. </p>


1999 ◽  
Vol 9 (3) ◽  
pp. 183 ◽  
Author(s):  
Laura L. Bourgeau-Chavez ◽  
Eric S. Kasischke ◽  
Mark D. Rutherford

Research was conducted to determine the utility of Synthetic Aperture Radar (SAR) data for measuring the fuel moisture status of boreal forests as reflected in Fire Weather Index Codes. Three years (May to August 1992–1995) of SAR data from the European Remote Sensing Satellite (ERS) were analysed over the 1990 Tok Alaska burned and adjacent unburned black spruce forests. Corresponding Fire Weather Index Codes of the Canadian Forest Fire Danger Rating System were obtained from Tok Area Forestry, Station number 500720. Strong relationships were expected between the SAR data and fire codes because of the dependence of ERS SAR backscatter on the moisture status of forests and exposed surfaces (burn scars). Astepwise multilinear regression procedure was used to analyse the relationships. Three statistically significant multilinear regression models resulted from this analysis procedure. The models developed show there is potential for using ERS SAR backscatter to generate indicators that are related to Fire Weather Index, Duff Moisture Code, and Drought Code. This research could lead to the ability for remote prediction of fire danger over large regions at relatively fine spatial resolution with minimal weather information.


1986 ◽  
Vol 62 (6) ◽  
pp. 507-513 ◽  
Author(s):  
D. A. Harvey ◽  
M. E. Alexander ◽  
B. Janz

The burning potential of two major fire seasons in northern Alberta is evaluated with the use of the Canadian Forest Fire Danger Rating System (CFFDRS). Fire danger class frequency and severity ratings based on the Fire Weather Index (FWI) component in the CFFDRS were utilized in the evaluation. Daily fire-danger reports from 16 selected fire weather stations distributed throughout the northern half of the province provided the basis for the analysis. Although the Seasonal Severity Rating (SSR) for 1981 was slightly higher (SSR = 3.1) than that of 1980 (SSR = 2.5), the area burned in 1981 was about double that of the previous year. The period of critical fire weather began early in the 1980 fire season and prior to the normal summer lightning pattern, whereas in 1981 it occurred during the latter half of the fire season and coincided with the majority of the lightning incidence. FWI severity ratings were not designed to portray a complete picture of the total potential fire containment job but rather to provide an objective basis on which to compare the severity of one season's fire weather with another. Key words: Fire Weather index, fire season seventy rating, critical fire weather, lightning occurrence, northern Alberta.


2012 ◽  
Vol 42 (1) ◽  
pp. 47-58 ◽  
Author(s):  
J.M. Waddington ◽  
D.K. Thompson ◽  
M. Wotton ◽  
W.L. Quinton ◽  
M.D. Flannigan ◽  
...  

The Duff Moisture Code (DMC) and Drought Code (DC) components of the Canadian Forest Fire Weather Index (FWI) System are used by fire managers to assess the vulnerability of organic soils to ignition and depth of burn despite being developed for upland soils. Given the need to assess wildfire risk in peatlands, we compared the DMC and DC in eight peatlands located in five regions in boreal Canada with water table position (WT) and surface volumetric moisture content (VMC). The slope of the change in WT and DC relationship ranged greatly (–0.01 to –0.11 cm) between sites and years likely due to differences in site-specific peat properties, catchment water supply, and presence of seasonal ice. A DC of 400, which has been associated with wildfire vulnerability in uplands, corresponded to a seasonal drop in WT in the range of 4–36 cm. The slopes of the relationships between DMC and DC with 5 and 15 cm VMC also varied greatly between sites. Our findings suggest that these FWI components are suitable for predicting the general moisture status and fire danger in boreal peatlands. However, there is a need for a modified DC for specific peat types to indicate when the WT has reached a critical depth upon which fire danger increases. We also present a suggested framework for the development of a new peat moisture code within the FWI.


Sign in / Sign up

Export Citation Format

Share Document