forest fires
Recently Published Documents


TOTAL DOCUMENTS

3482
(FIVE YEARS 1291)

H-INDEX

90
(FIVE YEARS 10)

Automatic environmental monitoring is a field that encompasses several scientific practices for the assessment of risks that may negatively impact a given environment, such as the forest. A forest is a natural environment that hosts various forms of plant and animal life, so preserving the forest is a top priority. To this end, the authors of this paper will focus on the development of an intelligent system for the early detection of forest fires, based on an IoT solution. This latter will thus facilitate the exploitation of the functionalities offered by the Cloud and mobile applications. Detecting and predicting forest fires with accuracy is a difficult task that requires machine learning and an in-depth analysis of environmental conditions. This leads the authors to adopt the forward neural network algorithm by highlighting its contribution through real experiments, performed on the prototype developed in this paper.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 139
Author(s):  
Galina Zhamsueva ◽  
Alexander Zayakhanov ◽  
Tamara Khodzher ◽  
Vadim Tcydypov ◽  
Tumen Balzhanov ◽  
...  

The atmosphere over Lake Baikal covers a vast area (31,500 square meters) and has more significant differences in the composition and variability of gaseous and aerosol components in atmospheric air than in coastal continental areas and is still a poorly studied object. In recent years, the anthropogenic impact on the ecosystem of Lake Baikal has been increasing due to the development of industry in the region, the expansion of tourist infrastructure and recreational areas of the coastal zone of the lake. In addition, one of the significant sources of atmospheric pollution in the Baikal region is the emissions of smoke aerosol and trace gases from forest fires, the number of which is increasing in the region. This article presents the results of experimental studies of the dispersed composition of aerosols and gas impurities, such as ozone, sulfur dioxide, and nitrogen oxides during route ship measurements in the water area of Lake Baikal in the summer of 2020.


Author(s):  
Elena Yu Novenko ◽  
Dmitry A. Kupryanov ◽  
Natalia G. Mazei ◽  
Anatoly Prokushkin ◽  
Leanne N. Phelps ◽  
...  

Abstract Recent climate change in Siberia is increasing the probability of dangerous forest fires. The development of effective measures to mitigate and prevent fires is impossible without an understanding of long-term fire dynamics. This paper presents the first multi-site palaeo-fire reconstruction based on macroscopic charcoal data from peat and lake sediment cores located in different landscapes across the permafrost area of Central Siberia. The obtained results show similar temporal patterns of charcoal accumulation rates in the cores under study, and near synchronous changes in fire regimes. The paleo-fire record revealed moderate biomass burning between 3.4 and 2.6 ka BP, followed by the period of lower burning occurring from 2.6 to 1.7 ka BP that coincided with regional climate cooling and moistening. Minimal fire activity was also observed during the Little Ice Age (0.7 – 0.25 ka BP). Fire frequencies increased during the interval from 1.7 to 0.7 ka BP and appears to be partly synchronous with climate warming during the Medieval Climate Anomaly. Regional reconstructions of long-term fire history show that recent fires are unprecedented during the late Holocene, with modern high biomass burning lying outside millennial and centennial variability of the last 3400 years.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 110
Author(s):  
Xiaoying Ping ◽  
Yu Chang ◽  
Miao Liu ◽  
Yuanman Hu ◽  
Wentao Huang ◽  
...  

Forest fires are a significant factor that affects the boreal forest carbon distribution which emits carbon into the atmosphere and leads to carbon redistribution among carbon pools. However, knowledge about how much carbon was transferred among pools and the immediate changes in soil nutrient contents in areas that were burned by fires of various severities are still limited. In this study, we surveyed eight wildfire sites that are located in northeast China within three months after the fires occurred. Our results indicate that the total soil nitrogen, phosphorus, and organic carbon contents significantly increased after moderate- and high-severity fires. The carbon emissions were 3.84, 5.14, and 12.86 Mg C/ha for low-, moderate-, and high-severity fires, respectively. The amount of carbon transferred among pools increased with fire severity except for the charcoal pool, storing the highest amounts of carbon in moderate-severity fires. Although the charcoal and ash pools accounted for a small proportion of the total ecosystem, they are important for biogeochemical cycles and are worthy of attention. The carbon redistribution information in our study is important for accurately estimating the forest carbon budget and providing crucial parameters for forest carbon cycling models to incorporate the carbon transfer process.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 117
Author(s):  
Philippe Quevauviller

The increasing severity and frequency of extreme weather and climate events (e.g., floods, heat and cold waves, storms, forest fires) resulting from climate change-compounded vulnerabilities and exposure require a specific research focus. Climate-related extreme events are part of disaster risk reduction policies ruled at international, EU, and national levels, covering various sectors and features such as awareness-raising, prevention, mitigation, preparedness, monitoring and detection, response, and recovery. A wide range of research and technological developments, as well as capacity-building and training projects, has supported the development and implementation of these policies and strategies. In particular, research and innovation actions support the paradigm shift from managing “disasters” to managing “risks” and enhancing resilience needs. In this respect, a huge body of knowledge and technology has been developed in the EU-funded Seventh Framework Programme (2007–2013) and Horizon 2020 (2014–2020), for example in the area of measures and technologies needed to enhance the response capacity to extreme weather and climate events affecting the security of people and assets. In addition, networking initiatives have been developed to connect scientists, policy-makers, practitioners, and industry and civil society representatives in order to boost research uptake, identify gaps, and elaborate research programs at EU level. Research and networking efforts are pursued within the newly starting framework program Horizon Europe (2021–2027), with a focus on supporting civil protection operations. This paper provides a general overview of relevant EU policies and examples of past and developing research in the area of weather and climate extreme events and highlights current networking efforts in this area.


Nature ◽  
2022 ◽  
Vol 601 (7892) ◽  
pp. 184-186
Author(s):  
Jane Palmer
Keyword(s):  

2022 ◽  
Vol 14 (2) ◽  
pp. 752
Author(s):  
Ziwei Han ◽  
Peiyao Chen ◽  
Meifang Hou ◽  
Qianqian Li ◽  
Guijin Su ◽  
...  

Hydrogels, as an emerging extinguishant, exhibit outstanding performance in forest fire rescues. However, the near-zero freezing point limits their application at low temperatures. Herein, a sensible candidate commercial extinguishant was selected for analysis, and its freezing point was modified based on the evaluation of water absorption rate, agglomeration, viscosity, and water dispersibility. Notably, the introduction of different antifreeze and flame retardant exhibited a significant disparate impact on the viscosity representative factor. Ten orthogonal experiments were performed to optimize the specific formulation. When ethylene glycol, urea and ammonium bicarbonate, and xanthan gum were applied as antifreeze, flame retardant, and thickener, with the addition amounts of 5 mL, 0.08 g and 0.04 g, and 0.12 g, respectively, the hydrogel extinguishant with 1% ratio in 50 mL of ultra-water featured the remarkable performance. Compared with the original extinguishant, the freezing point of the modified sample decreased from −0.3 to −9.2 °C. The sample’s viscosity was improved from 541 to 1938 cP, and the flame retardance time was more than 120 s. The results of corrosion and biotoxicity show that the optimized hydrogel extinguishant satisfies the national standards. This understanding provides a deeper insight into the application of low-temperature extinguishants in forest fires.


2022 ◽  
Vol 2 (1) ◽  
pp. 38-45
Author(s):  
Husmiati Yusuf ◽  
Fahmi Ilman Fahrudin ◽  
Adi Fahrudin ◽  
Abu Huraerah ◽  
Kiyah George Albert Wanda

This paper will look into the topic of community involvement in forest fire disaster prevention, specifically in Indonesia. To begin, the paper will discuss the problem of forest fires in Indonesia, which occur frequently. The study also addressed issues related to disaster management, such as a lack of competence and knowledge, which resulted in disaster management ineffectiveness. The paper's third portion discusses the government's involvement in catastrophe management. Several initiatives and support have been implemented.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Udaya Dampage ◽  
Lumini Bandaranayake ◽  
Ridma Wanasinghe ◽  
Kishanga Kottahachchi ◽  
Bathiya Jayasanka

AbstractForest fires have become a major threat around the world, causing many negative impacts on human habitats and forest ecosystems. Climatic changes and the greenhouse effect are some of the consequences of such destruction. Interestingly, a higher percentage of forest fires occur due to human activities. Therefore, to minimize the destruction caused by forest fires, there is a need to detect forest fires at their initial stage. This paper proposes a system and methodology that can be used to detect forest fires at the initial stage using a wireless sensor network. Furthermore, to acquire more accurate fire detection, a machine learning regression model is proposed. Because of the primary power supply provided by rechargeable batteries with a secondary solar power supply, a solution is readily implementable as a standalone system for prolonged periods. Moreover, in-depth attention is given to sensor node design and node placement requirements in harsh forest environments and to minimize the damage and harmful effects caused by wild animals, weather conditions, etc. to the system. Numerous trials conducted in real tropical forest sites found that the proposed system is effective in alerting forest fires with lower latency than the existing systems.


2022 ◽  
Vol 14 (2) ◽  
pp. 594
Author(s):  
Gavriil Xanthopoulos ◽  
Miltiadis Athanasiou ◽  
Alexia Nikiforaki ◽  
Konstantinos Kaoukis ◽  
Georgios Mantakas ◽  
...  

The island of Kythira in Greece suffered a major forest fire in 2017 that burned 8.91% of its total area and revealed many challenges regarding fire management. Following that, the Hellenic Society for the Protection of Nature joined forces with the Institute of Mediterranean and Forest Ecosystems in a project aiming to improve fire prevention there through mobilization and cooperation of the population. This paper describes the methodology and the results. The latter include an in-depth analysis of fire statistics for the island, development of a forest fuels map, and prevention planning for selected settlements based on fire modeling and on an assessment of the vulnerability of 610 structures, carried out with the contribution of groups of volunteers. Emphasis was placed on informing locals, including students, through talks and workshops, on how to prevent forest fires and prepare their homes and themselves for such an event, and on mobilizing them to carry out fuel management and forest rehabilitation work. In the final section of the paper, the challenges that the two partners faced and the project achievements and shortcomings are presented and discussed, leading to conclusions that can be useful for similar efforts in other places in Greece and elsewhere.


Sign in / Sign up

Export Citation Format

Share Document