scholarly journals Multi-Objective Optimal Allocation of Urban Water Resources While Considering Conflict Resolution Based on the PSO Algorithm: A Case Study of Kunming, China

2020 ◽  
Vol 12 (4) ◽  
pp. 1337 ◽  
Author(s):  
Junfei Chen ◽  
Cong Yu ◽  
Miao Cai ◽  
Huimin Wang ◽  
Pei Zhou

With the rapid increase of water demand in urban life, ecology and production sectors, the problem of water resources allocation has become increasingly prominent. It has hindered the sustainable development of urban areas. Based on the supply of various water sources and the water demand of different water users, a multi-objective optimal allocation model for urban water resources was proposed. The model was solved using the algorithm of particle swarm optimization (PSO). The algorithm has a fast convergence and is both simple and efficient. In this paper, the conflict over Kunming’s water resources allocation was taken as an example. The PSO algorithm was used to obtain optimized water resources allocation plans in the year 2020 and 2030, under the circumstances of a dry year (inflow guarantee rate p = 0.825) and an unusually dry year (inflow guarantee rate p = 0.885), respectively. The results showed that those allocation plans can lower the future potential water shortage rates of Kunming. At the same time, the interests of different sectors can all be satisfied. Therefore, conflicts over urban water use can be effectively alleviated.

2015 ◽  
Vol 81 (2) ◽  
pp. 1209-1228 ◽  
Author(s):  
Qian Zhang ◽  
Xiujuan Liang ◽  
Zhang Fang ◽  
Tao Jiang ◽  
Yubo Wang ◽  
...  

2015 ◽  
Vol 15 (4) ◽  
pp. 817-824 ◽  
Author(s):  
Jing Peng ◽  
Ximin Yuan ◽  
Lan Qi ◽  
Qiliang Li

Water resources supply and demand has become a serious problem. Water resources allocation is usually a multi-objective problem, and has been of concern for many researchers. In the north of China, the lack of water resources in the Huai River Basin has handicapped the development of the economy, especially badly in the low-flow period. So it is necessary to study water resources allocation in this area. In this paper, a multi-objective dynamic water resources allocation model has been developed. The developed model took the overall satisfaction of water users in a time interval as the objective function, applied an improved simplex method to solve the calculation, considered the overall users' satisfaction variation with time, and followed the principle that the variation of the system satisfaction within adjacent periods of time must be minimal. The established model was then applied to the Huai River, for the present situation (2010), short-term (2020) and long-term (2030) planning timeframes. From the calculation results, the overall satisfaction in late May and mid September in 2030 was 0.65 and 0.70. After using the model allocation optimization, the overall satisfaction was improved, increasing to 0.78 and 0.79, respectively, thus achieving the dynamic balance optimization of water resources allocation in time and space. This model can provide useful decision support in water resources allocation, when it is used to alleviate water shortages occurring in the low-flow period.


Author(s):  
Dua'a B. Telfah ◽  
Riccardo Minciardi ◽  
Giorgio Roth

Abstract. Modelling and optimization techniques for water resources allocation are proposed to identify the economic value of the unsatisfied municipal water demand against demands emerging from other sectors. While this is always an important step in integrated water resource management perspective, it became crucial for water scarce Countries. In fact, since the competition for the resource is high, they are in crucial need to trade values which will help them in satisfying their policies and needs. In this framework, hydro-economic, social equity and environmental constraints need to be satisfied. In the present study, a hydro-economic decision model based on optimization schemes has been developed for water resources allocation, that enable the evaluation of the economic cost of a deficiency in fulfilling the municipal demand. Moreover, the model enables efficient water resources management, satisfying the demand and proposing additional water resources options. The formulated model is designed to maximize the demand satisfaction and minimize water production cost subject to system priorities, preferences and constraints. The demand priorities are defined based on the effect of demand dissatisfaction, while hydrogeological and physical characteristics of the resources are embedded as constraints in the optimization problem. The application to the City of Amman is presented. Amman is the Capital City of the Hashemite Kingdom of Jordan, a Country located in the south-eastern area of the Mediterranean, on the East Bank of the Jordan River. The main challenge for Jordan, that threat the development and prosperity of all sectors, is the extreme water scarcity. In fact, Jordan is classified as semi-arid to arid region with limited financial resources and unprecedented population growth. While the easy solution directly goes to the simple but expensive approach to cover the demand, case study results show that the proposed model plays a major role in providing directions to decision makers to orient their policies and strategies in order to achieve sustainability of scarce water resources, satisfaction of the minimum required demand as well as financial sustainability. In addition, results map out national needs and priorities that are crucial in understanding and controlling the complexity of Jordan's water sector, mainly for the city of Amman.


2019 ◽  
Vol 33 (10) ◽  
pp. 3633-3653 ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Dedi Liu ◽  
Zhengke Pan ◽  
Xingjun Hong

Sign in / Sign up

Export Citation Format

Share Document