scholarly journals Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California

2020 ◽  
Vol 12 (16) ◽  
pp. 6362
Author(s):  
Amninder Singh ◽  
Nigel W. T. Quinn ◽  
Sharon E. Benes ◽  
Florence Cassel

Environmental policies to address water quality impairments in the San Joaquin River of California have focused on the reduction of salinity and selenium-contaminated subsurface agricultural drainage loads from westside sources. On 31 December 2019, all of the agricultural drainage from a 44,000 ha subarea on the western side of the San Joaquin River basin was curtailed. This policy requires the on-site disposal of all of the agricultural drainage water in perpetuity, except during flooding events, when emergency drainage to the River is sanctioned. The reuse of this saline agricultural drainage water to irrigate forage crops, such as ‘Jose’ tall wheatgrass and alfalfa, in a 2428 ha reuse facility provides an economic return on this pollutant disposal option. Irrigation with brackish water requires careful management to prevent salt accumulation in the crop root zone, which can impact forage yields. The objective of this study was to optimize the sustainability of this reuse facility by maximizing the evaporation potential while achieving cost recovery. This was achieved by assessing the spatial and temporal distribution of the root zone salinity in selected fields of ‘Jose’ tall wheatgrass and alfalfa in the drainage reuse facility, some of which have been irrigated with brackish subsurface drainage water for over fifteen years. Electromagnetic soil surveys using an EM-38 instrument were used to measure the spatial variability of the salinity in the soil profile. The tall wheatgrass fields were irrigated with higher salinity water (1.2–9.3 dS m−1) compared to the fields of alfalfa (0.5–6.5 dS m−1). Correspondingly, the soil salinity in the tall wheatgrass fields was higher (12.5 dS m−1–19.3 dS m−1) compared to the alfalfa fields (8.97 dS m−1–14.4 dS m−1) for the years 2016 and 2017. Better leaching of salts was observed in the fields with a subsurface drainage system installed (13–1 and 13–2). The depth-averaged root zone salinity data sets are being used for the calibration of the transient hydro-salinity computer model CSUID-ID (a one-dimensional version of the Colorado State University Irrigation Drainage Model). This user-friendly decision support tool currently provides a useful framework for the data collection needed to make credible, field-scale salinity budgets. In time, it will provide guidance for appropriate leaching requirements and potential blending decisions for sustainable forage production. This paper shows the tie between environmental drainage policy and the role of local governance in the development of sustainable irrigation practices, and how well-directed collaborative field research can guide future resource management.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mufeed Batarseh

A leaching experiment of calcareous saline-sodic soil was conducted in Jordan Valley and aimed to reduce the soil salinity ≤ 4.0 dS m−1. The quantification of salt removal from the effective root zone was done using three treatment scenarios. Treatment A contained soil amended with gypsum leaching with fresh water (EC = 1.1 dS m−1). Treatments B and C contained nonamended soil, but B was leached with fresh water only while treatment C’s soil was washed with saline agricultural drainage water (EC = 8 dS m−1) at the start of the experiment and continued with fresh water to reach the desired soil salinity. All treatments were able to reduce the soil salinity to the desired level at the end of the experiment; however, there were clear differences in the salt removal efficiencies among the treatments which were attributed to the presence of direct source of calcium ion. The soil amended with gypsum caused a substantial decline in soil salinity and drainage water’s electrical conductivity and drained the water twice as fast as the nonamended soil. It was found that utilizing agricultural drainage water and gypsum as a soil amendment for calcareous saline-sodic soil reclamation can beneficially contribute to sustainable agricultural management in the Jordan Valley.


2021 ◽  
Vol 9 (6) ◽  
pp. 1331
Author(s):  
Arnaud Jéglot ◽  
Sebastian Reinhold Sørensen ◽  
Kirk M. Schnorr ◽  
Finn Plauborg ◽  
Lars Elsgaard

Denitrifying woodchip bioreactors (WBR), which aim to reduce nitrate (NO3−) pollution from agricultural drainage water, are less efficient when cold temperatures slow down the microbial transformation processes. Conducting bioaugmentation could potentially increase the NO3− removal efficiency during these specific periods. First, it is necessary to investigate denitrifying microbial populations in these facilities and understand their temperature responses. We hypothesized that seasonal changes and subsequent adaptations of microbial populations would allow for enrichment of cold-adapted denitrifying bacterial populations with potential use for bioaugmentation. Woodchip material was sampled from an operating WBR during spring, fall, and winter and used for enrichments of denitrifiers that were characterized by studies of metagenomics and temperature dependence of NO3− depletion. The successful enrichment of psychrotolerant denitrifiers was supported by the differences in temperature response, with the apparent domination of the phylum Proteobacteria and the genus Pseudomonas. The enrichments were found to have different microbiomes’ composition and they mainly differed with native woodchip microbiomes by a lower abundance of the genus Flavobacterium. Overall, the performance and composition of the enriched denitrifying population from the WBR microbiome indicated a potential for efficient NO3− removal at cold temperatures that could be stimulated by the addition of selected cold-adapted denitrifying bacteria.


Author(s):  
G. M. Chescheir ◽  
R. W. Skaggs ◽  
J. W. Gilliam ◽  
R. G. Broadhead

Sign in / Sign up

Export Citation Format

Share Document