scholarly journals Artificial Intelligence and Reflections from Educational Landscape: A Review of AI Studies in Half a Century

2021 ◽  
Vol 13 (2) ◽  
pp. 800
Author(s):  
Aras Bozkurt ◽  
Abdulkadir Karadeniz ◽  
David Baneres ◽  
Ana Elena Guerrero-Roldán ◽  
M. Elena Rodríguez

Artificial intelligence (AI) has penetrated every layer of our lives, and education is not immune to the effects of AI. In this regard, this study examines AI studies in education in half a century (1970–2020) through a systematic review approach and benefits from social network analysis and text-mining approaches. Accordingly, the research identifies three research clusters (1) artificial intelligence, (2) pedagogical, and (3) technological issues, and suggests five broad research themes which are (1) adaptive learning and personalization of education through AI-based practices, (2) deep learning and machine Learning algorithms for online learning processes, (3) Educational human-AI interaction, (4) educational use of AI-generated data, and (5) AI in higher education. The study also highlights that ethics in AI studies is an ignored research area.

2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.


Diagnostics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Lea Pehrson ◽  
Michael Nielsen ◽  
Carsten Ammitzbøl Lauridsen

The aim of this study was to provide an overview of the literature available on machine learning (ML) algorithms applied to the Lung Image Database Consortium Image Collection (LIDC-IDRI) database as a tool for the optimization of detecting lung nodules in thoracic CT scans. This systematic review was compiled according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only original research articles concerning algorithms applied to the LIDC-IDRI database were included. The initial search yielded 1972 publications after removing duplicates, and 41 of these articles were included in this study. The articles were divided into two subcategories describing their overall architecture. The majority of feature-based algorithms achieved an accuracy >90% compared to the deep learning (DL) algorithms that achieved an accuracy in the range of 82.2%–97.6%. In conclusion, ML and DL algorithms are able to detect lung nodules with a high level of accuracy, sensitivity, and specificity using ML, when applied to an annotated archive of CT scans of the lung. However, there is no consensus on the method applied to determine the efficiency of ML algorithms.


2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii17-iii17
Author(s):  
Waverly Rose Brim ◽  
Leon Jekel ◽  
Gabriel Cassinelli Petersen ◽  
Harry Subramanian ◽  
Tal Zeevi ◽  
...  

Abstract Purpose Medical staging, surgical planning, and therapeutic decisions are significantly different for brain metastases versus gliomas. Machine learning (ML) algorithms have been developed to differentiate these pathologies. We performed a systematic review to characterize ML methods and to evaluate their accuracy. Methods Studies on the application of machine learning in neuro-oncology were searched in Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL) and Web of science core-collection. A search strategy was designed in compliance with a clinical librarian and confirmed by a second librarian. The search strategy comprised of controlled vocabulary including artificial intelligence, machine learning, deep learning, magnetic resonance imaging, and glioma. The initial search was performed in October 2020 and then updated in February 2021. Candidate articles were screened in Covidence by at least two reviewers each. A bias analysis was conducted in agreement with TRIPOD, a bias assessment tool similar to CLAIM. Results Twenty-nine articles were used for data extraction. Four articles specified model development for solitary brain metastases. Classical ML (cML) algorithms represented 85% of models used, while deep learning (DL) accounted for 15%. cML algorithms performed with an average accuracy, sensitivity, and specificity of 82%, 78%, 88%, respectively; DL performed 84%, 79%, 81%. The support vector machine (SVM) algorithm was the most common used cML model in the literature and convolutional neural networks (CNN) were standard for DL models. We also found T1, T1 post-gadolinium and T2 sequences were most commonly used for feature extraction. Preliminary TRIPOD analysis yielded an average score of 14.25 (range 8–18). Conclusion ML algorithms that can accurately classify glioma from brain metastases have been developed. SVM and CNN are leading approaches with high accuracy. Standardized algorithm performance reporting is a clear limitation to be addressed in future studies.


2021 ◽  
Vol 29 (Supplement_1) ◽  
pp. i18-i18
Author(s):  
N Hassan ◽  
R Slight ◽  
D Weiand ◽  
A Vellinga ◽  
G Morgan ◽  
...  

Abstract Introduction Sepsis is a life-threatening condition that is associated with increased mortality. Artificial intelligence tools can inform clinical decision making by flagging patients who may be at risk of developing infection and subsequent sepsis and assist clinicians with their care management. Aim To identify the optimal set of predictors used to train machine learning algorithms to predict the likelihood of an infection and subsequent sepsis and inform clinical decision making. Methods This systematic review was registered in PROSPERO database (CRD42020158685). We searched 3 large databases: Medline, Cumulative Index of Nursing and Allied Health Literature, and Embase, using appropriate search terms. We included quantitative primary research studies that focused on sepsis prediction associated with bacterial infection in adult population (&gt;18 years) in all care settings, which included data on predictors to develop machine learning algorithms. The timeframe of the search was 1st January 2000 till the 25th November 2019. Data extraction was performed using a data extraction sheet, and a narrative synthesis of eligible studies was undertaken. Narrative analysis was used to arrange the data into key areas, and compare and contrast between the content of included studies. Quality assessment was performed using Newcastle-Ottawa Quality Assessment scale, which was used to evaluate the quality of non-randomized studies. Bias was not assessed due to the non-randomised nature of the included studies. Results Fifteen articles met our inclusion criteria (Figure 1). We identified 194 predictors that were used to train machine learning algorithms to predict infection and subsequent sepsis, with 13 predictors used on average across all included studies. The most significant predictors included age, gender, smoking, alcohol intake, heart rate, blood pressure, lactate level, cardiovascular disease, endocrine disease, cancer, chronic kidney disease (eGFR&lt;60ml/min), white blood cell count, liver dysfunction, surgical approach (open or minimally invasive), and pre-operative haematocrit &lt; 30%. These predictors were used for the development of all the algorithms in the fifteen articles. All included studies used artificial intelligence techniques to predict the likelihood of sepsis, with average sensitivity 77.5±19.27, and average specificity 69.45±21.25. Conclusion The type of predictors used were found to influence the predictive power and predictive timeframe of the developed machine learning algorithm. Two strengths of our review were that we included studies published since the first definition of sepsis was published in 2001, and identified factors that can improve the predictive ability of algorithms. However, we note that the included studies had some limitations, with three studies not validating the models that they developed, and many tools limited by either their reduced specificity or sensitivity or both. This work has important implications for practice, as predicting the likelihood of sepsis can help inform the management of patients and concentrate finite resources to those patients who are most at risk. Producing a set of predictors can also guide future studies in developing more sensitive and specific algorithms with increased predictive time window to allow for preventive clinical measures.


2020 ◽  
Author(s):  
Fareeha Anwar ◽  
Qurat-Ul-Ain ◽  
Muhammad Yasir Ejaz ◽  
Amir Mosavi

Diabetes Mellitus is commonly known as diabetes. It is one of the most chronic diseases as the World Health Organization (WHO) report shows that the number of diabetes patients has risen from 108 million to 422 million in 2014. Early diagnosis of diabetes is important because it can cause different diseases that include kidney failure, stroke, blindness, heart attacks, and lower limb amputation. Different diabetes diagnosis models are found in literature, but there is still a need to perform a survey to analyze which model is best. This paper performs a literature review for diabetes diagnosis approaches using Artificial Intelligence (neural networks, machine learning, deep learning, hybrid methods, and/or stacked-integrated use of different machine learning algorithms). More than thirty-five papers have been shortlisted that focus on diabetes diagnosis approaches. Different datasets are available online for the diagnosis of diabetes. Pima Indian Diabetes Dataset (PIDD) is the most commonly used for diabetes prediction. In contrast with other datasets, it has key factors which play an important role in diabetes diagnosis. This survey also throws light on the weaknesses of the existing approaches that make them less appropriate for a diabetes diagnosis. In artificial intelligence techniques, deep learning is widespread and in medical research, heart rate is getting more attention. Deep learning combined with other algorithms can give better results in diabetes diagnosis and heart rate should be used for other cardiac disease diagnoses.


2021 ◽  
Vol 14 (11) ◽  
pp. 94
Author(s):  
Thiti Jantakun ◽  
Kitsadaporn Jantakun ◽  
Thada Jantakoon

This research aims to 1) Develop a common framework for artificial intelligence in higher education (AAI-HE model) and 2) Assess the AAI-HE model. The research process is divided into two stages: 1) Develop an AAI-HE model, and 2) Assessment the model. The sample consists of five experts chosen through purposive sampling. The data is analyzed by means and standardized deviations statistically. The research result shows that 1) the AAI-HE model consists of seven key components which are 1.1) User Interactive Components and Technology of AI, 1.2) Components and Technology of AI, 1.3) Roles for Artificial Intelligence in Education 1.4) Machine Learning and Deep Learning 1.5) DSS Modules 1.6) Applications of Artificial Intelligence in Education, and 1.7) AI to enhance campus efficiencies, and 2) The result of the assessment of the AAI-HE model is rated as absolutely appropriate overall.


Author(s):  
Amit Kumar Tyagi ◽  
Poonam Chahal

With the recent development in technologies and integration of millions of internet of things devices, a lot of data is being generated every day (known as Big Data). This is required to improve the growth of several organizations or in applications like e-healthcare, etc. Also, we are entering into an era of smart world, where robotics is going to take place in most of the applications (to solve the world's problems). Implementing robotics in applications like medical, automobile, etc. is an aim/goal of computer vision. Computer vision (CV) is fulfilled by several components like artificial intelligence (AI), machine learning (ML), and deep learning (DL). Here, machine learning and deep learning techniques/algorithms are used to analyze Big Data. Today's various organizations like Google, Facebook, etc. are using ML techniques to search particular data or recommend any post. Hence, the requirement of a computer vision is fulfilled through these three terms: AI, ML, and DL.


2021 ◽  
pp. PP. 18-50
Author(s):  
Ahmed A. Elngar ◽  
◽  
◽  
◽  
◽  
...  

Computer vision is one of the fields of computer science that is one of the most powerful and persuasive types of artificial intelligence. It is similar to the human vision system, as it enables computers to recognize and process objects in pictures and videos in the same way as humans do. Computer vision technology has rapidly evolved in many fields and contributed to solving many problems, as computer vision contributed to self-driving cars, and cars were able to understand their surroundings. The cameras record video from different angles around the car, then a computer vision system gets images from the video, and then processes the images in real-time to find roadside ends, detect other cars, and read traffic lights, pedestrians, and objects. Computer vision also contributed to facial recognition; this technology enables computers to match images of people’s faces to their identities. which these algorithms detect facial features in images and then compare them with databases. Computer vision also play important role in Healthcare, in which algorithms can help automate tasks such as detecting Breast cancer, finding symptoms in x-ray, cancerous moles in skin images, and MRI scans. Computer vision also contributed to many fields such as image classification, object discovery, motion recognition, subject tracking, and medicine. The rapid development of artificial intelligence is making machine learning more important in his field of research. Use algorithms to find out every bit of data and predict the outcome. This has become an important key to unlocking the door to AI. If we had looked to deep learning concept, we find deep learning is a subset of machine learning, algorithms inspired by structure and function of the human brain called artificial neural networks, learn from large amounts of data. Deep learning algorithm perform a task repeatedly, each time tweak it a little to improve the outcome. So, the development of computer vision was due to deep learning. Now we'll take a tour around the convolution neural networks, let us say that convolutional neural networks are one of the most powerful supervised deep learning models (abbreviated as CNN or ConvNet). This name ;convolutional ; is a token from a mathematical linear operation between matrixes called convolution. CNN structure can be used in a variety of real-world problems including, computer vision, image recognition, natural language processing (NLP), anomaly detection, video analysis, drug discovery, recommender systems, health risk assessment, and time-series forecasting. If we look at convolutional neural networks, we see that CNN are similar to normal neural networks, the only difference between CNN and ANN is that CNNs are used in the field of pattern recognition within images mainly. This allows us to encode the features of an image into the structure, making the network more suitable for image-focused tasks, with reducing the parameters required to set-up the model. One of the advantages of CNN that it has an excellent performance in machine learning problems. So, we will use CNN as a classifier for image classification. So, the objective of this paper is that we will talk in detail about image classification in the following sections.


2021 ◽  
Author(s):  
revathi B. S. ◽  
A. Meena Kowshalya

Abstract Image Captioning is the process of generating textual descriptions of an image. These descriptions need to be syntactically and semantically correct. Image Captioning has potential advantages in many applications like image indexing techniques, devices for visually impaired persons, social media and several other natural language processing applications. Image Captioning is a popular research area where numerous scopes for new findings exist in preparation of datasets, generating language models, developing the models and evaluating the same. This paper extensively surveys very early literature that includes the advent of Artificial Intelligence, the Machine Learning pathway, the photography era, the early Deep Learning and the current Deep Learning methodology for image Captioning. This survey will definitely help novice researchers to understand the roadmap to current techniques.


Sign in / Sign up

Export Citation Format

Share Document