Optimization and Evaluation of Platooning Car-Following Models in a Connected Vehicle Environment
With the rapid development of information and communication technology, future intelligent transportation systems will exhibit a trend of cooperative driving of connected vehicles. Platooning is an important application technique for cooperative driving. Herein, optimized car-following models for platoon control based on intervehicle communication technology are proposed. On the basis of existing indicators, a series of evaluation methods for platoon safety, stability, and energy consumption is constructed. Numerical simulations are used to compare the effects of three traditional models and their optimized counterparts on the car-following process. Moreover, the influence of homogenous and heterogeneous attributes on the platoon is analyzed. The optimized model proposed in this paper can improve the stability and safety of vehicle following and reduce the total fuel consumption. The simulation results show that a homogenous platoon can enhance the overall stability of the platoon and that the desired safety margin (DSM) model is better suited for heterogeneous platoon control than the other two models. This paper provides a practical method for the design and systematic evaluation of a platoon control strategy, which is one of the key focuses in the connected and autonomous vehicle industry.