scholarly journals Charging Point Usage in Germany—Automated Retrieval, Analysis, and Usage Types Explained

2021 ◽  
Vol 13 (23) ◽  
pp. 13046
Author(s):  
Philipp A. Friese ◽  
Wibke Michalk ◽  
Markus Fischer ◽  
Cornelius Hardt ◽  
Klaus Bogenberger

This study presents an approach to collect and classify usage data of public charging infrastructure in order to predict usage based on socio-demographic data within a city. The approach comprises data acquisition and a two-step machine learning approach, classifying and predicting usage behavior. Data is acquired by gathering information on charging points from publicly available sources. The first machine learning step identifies four relevant usage patterns from the gathered data using an agglomerative clustering approach. The second step utilizes a Random Forest Classification to predict usage patterns from socio-demographic factors in a spatial context. This approach allows to predict usage behavior at locations for potential new charging points. Applying the presented approach to Munich, a large city in Germany, results confirm the adaptability in complex urban environments. Visualizing the spatial distribution of the predicted usage patterns shows the prevalence of different patterns throughout the city. The presented approach helps municipalities and charging infrastructure operators to identify areas with certain usage patterns and, hence different technical requirements, to optimize the charging infrastructure in order to help meeting the increasing demand of electric mobility.

2021 ◽  
pp. 030573562097278
Author(s):  
Giulia Ripani

Using the Theory of Social Representations as theoretical and methodological framework, the purpose of this study was to analyze adults’ mental images (social representations) of music and musical selves across the lifespan. Participants ( N = 74) were chosen using purposive sampling in various sociocultural contexts in a large city in the Southeastern United States. As previous studies documented, projective techniques (drawings and linguist associations) can access the most latent dimensions of thinking. Accordingly, drawings and linguistic associations to the textual stimuli “me,” “music,” and “music and me” were used to gain insights into adults’ mental images of music and musical selves. Participants were also asked to provide socio-demographic data that might affect or correlate with their responses. The Correspondences Analysis technique was used to reconstruct representational fields associated with the stimuli. For each stimulus, a five-factor extraction identified hidden dimensions in adult musical thinking and summarized the links between socio-demographic variables and adults’ responses. From a developmental perspective, the comparison of drawings and linguistic associations revealed stable and changing elements in adults’ representations of music and musical selves across the lifespan. From a sociocultural perspective, this study documented the influence of the variable ethnicity on adults’ responses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoaki Mameno ◽  
Masahiro Wada ◽  
Kazunori Nozaki ◽  
Toshihito Takahashi ◽  
Yoshitaka Tsujioka ◽  
...  

AbstractThe purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 implants with at least 4 years in function. Demographic data and parameters known to be risk factors for the development of peri-implantitis were analyzed with three models: logistic regression, support vector machines, and random forests (RF). As the results, RF had the highest performance in predicting the onset of peri-implantitis (AUC: 0.71, accuracy: 0.70, precision: 0.72, recall: 0.66, and f1-score: 0.69). The factor that had the most influence on prediction was implant functional time, followed by oral hygiene. In addition, PCR of more than 50% to 60%, smoking more than 3 cigarettes/day, KMW less than 2 mm, and the presence of less than two occlusal supports tended to be associated with an increased risk of peri-implantitis. Moreover, these risk indicators were not independent and had complex effects on each other. The results of this study suggest that peri-implantitis onset was predicted in 70% of cases, by RF which allows consideration of nonlinear relational data with complex interactions.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Kang Liu ◽  
Ling Yin ◽  
Meng Zhang ◽  
Min Kang ◽  
Ai-Ping Deng ◽  
...  

Abstract Background Dengue fever (DF) is a mosquito-borne infectious disease that has threatened tropical and subtropical regions in recent decades. An early and targeted warning of a dengue epidemic is important for vector control. Current studies have primarily determined weather conditions to be the main factor for dengue forecasting, thereby neglecting that environmental suitability for mosquito breeding is also an important factor, especially in fine-grained intra-urban settings. Considering that street-view images are promising for depicting physical environments, this study proposes a framework for facilitating fine-grained intra-urban dengue forecasting by integrating the urban environments measured from street-view images. Methods The dengue epidemic that occurred in 167 townships of Guangzhou City, China, between 2015 and 2019 was taken as a study case. First, feature vectors of street-view images acquired inside each township were extracted by a pre-trained convolutional neural network, and then aggregated as an environmental feature vector of the township. Thus, townships with similar physical settings would exhibit similar environmental features. Second, the environmental feature vector is combined with commonly used features (e.g., temperature, rainfall, and past case count) as inputs to machine-learning models for weekly dengue forecasting. Results The performance of machine-learning forecasting models (i.e., MLP and SVM) integrated with and without environmental features were compared. This indicates that models integrating environmental features can identify high-risk urban units across the city more precisely than those using common features alone. In addition, the top 30% of high-risk townships predicted by our proposed methods can capture approximately 50–60% of dengue cases across the city. Conclusions Incorporating local environments measured from street view images is effective in facilitating fine-grained intra-urban dengue forecasting, which is beneficial for conducting spatially precise dengue prevention and control.


2021 ◽  
pp. 002242942110650
Author(s):  
Giulia Ripani

Using the Theory of Social Representations as a theoretical and methodological framework, the purpose of this study was to describe children’s representations of music, musical identities, and musical engagement across middle childhood. Participants were primary students aged 8 to 11 ( N = 132) from four schools in a large city in the Southeastern United States. Previous studies have documented that projective techniques (linguistic associations with textual stimuli) can access latent dimensions of thinking. Accordingly, linguistic associations with the textual stimuli “music,” “music and me,” music at school,” and “music outside school” were used to gain insight into children’s representations of music, musical identities, and musical engagement. Participants were also asked to provide socio-demographic data that might influence their responses. The Correspondences Analysis technique was used to reconstruct representational fields associated with the stimuli. For each stimulus, a three-factor extraction identified hidden dimensions in children’s linguistic responses and summarized the links between contextual variables and children’s representations. Major findings suggest that children at increasingly younger ages express preferences and construct their own representations of music and musical identities.


2021 ◽  
pp. 875529302110423
Author(s):  
Zoran Stojadinović ◽  
Miloš Kovačević ◽  
Dejan Marinković ◽  
Božidar Stojadinović

This article proposes a new framework for rapid earthquake loss assessment based on a machine learning damage classification model and a representative sampling algorithm. A random forest classification model predicts a damage probability distribution that, combined with an expert-defined repair cost matrix, enables the calculation of the expected repair costs for each building and, in aggregate, of direct losses in the earthquake-affected area. The proposed building representation does not include explicit information about the earthquake and the soil type. Instead, such information is implicitly contained in the spatial distribution of damage. To capture this distribution, a sampling algorithm, based on K-means clustering, is used to select a minimal number of buildings that represent the area of interest in terms of its seismic risk, independently of future earthquakes. To observe damage states in the representative set after an earthquake, the proposed framework utilizes a local network of trained damage assessors. The model is updated after each damage observation cycle, thus increasing the accuracy of the current loss assessment. The proposed framework is exemplified using the 2010 Kraljevo, Serbia earthquake dataset.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7834
Author(s):  
Christopher Hecht ◽  
Jan Figgener ◽  
Dirk Uwe Sauer

Electric vehicles may reduce greenhouse gas emissions from individual mobility. Due to the long charging times, accurate planning is necessary, for which the availability of charging infrastructure must be known. In this paper, we show how the occupation status of charging infrastructure can be predicted for the next day using machine learning models— Gradient Boosting Classifier and Random Forest Classifier. Since both are ensemble models, binary training data (occupied vs. available) can be used to provide a certainty measure for predictions. The prediction may be used to adapt prices in a high-load scenario, predict grid stress, or forecast available power for smart or bidirectional charging. The models were chosen based on an evaluation of 13 different, typically used machine learning models. We show that it is necessary to know past charging station usage in order to predict future usage. Other features such as traffic density or weather have a limited effect. We show that a Gradient Boosting Classifier achieves 94.8% accuracy and a Matthews correlation coefficient of 0.838, making ensemble models a suitable tool. We further demonstrate how a model trained on binary data can perform non-binary predictions to give predictions in the categories “low likelihood” to “high likelihood”.


Author(s):  
Chaudhari Shraddha

Activity recognition in humans is one of the active challenges that find its application in numerous fields such as, medical health care, military, manufacturing, assistive techniques and gaming. Due to the advancements in technologies the usage of smartphones in human lives has become inevitable. The sensors in the smartphones help us to measure the essential vital parameters. These measured parameters enable us to monitor the activities of humans, which we call as human activity recognition. We have applied machine learning techniques on a publicly available dataset. K-Nearest Neighbors and Random Forest classification algorithms are applied. In this paper, we have designed and implemented an automatic human activity recognition system that independently recognizes the actions of the humans. This system is able to recognize the activities such as Laying, Sitting, Standing, Walking, Walking downstairs and Walking upstairs. The results obtained show that, the KNN and Random Forest Algorithms gives 90.22% and 92.70% respectively of overall accuracy in detecting the activities.


2022 ◽  
Vol 17 (1) ◽  
pp. 165-198
Author(s):  
Kamil Matuszelański ◽  
Katarzyna Kopczewska

This study is a comprehensive and modern approach to predict customer churn in the example of an e-commerce retail store operating in Brazil. Our approach consists of three stages in which we combine and use three different datasets: numerical data on orders, textual after-purchase reviews and socio-geo-demographic data from the census. At the pre-processing stage, we find topics from text reviews using Latent Dirichlet Allocation, Dirichlet Multinomial Mixture and Gibbs sampling. In the spatial analysis, we apply DBSCAN to get rural/urban locations and analyse neighbourhoods of customers located with zip codes. At the modelling stage, we apply machine learning extreme gradient boosting and logistic regression. The quality of models is verified with area-under-curve and lift metrics. Explainable artificial intelligence represented with a permutation-based variable importance and a partial dependence profile help to discover the determinants of churn. We show that customers’ propensity to churn depends on: (i) payment value for the first order, number of items bought and shipping cost; (ii) categories of the products bought; (iii) demographic environment of the customer; and (iv) customer location. At the same time, customers’ propensity to churn is not influenced by: (i) population density in the customer’s area and division into rural and urban areas; (ii) quantitative review of the first purchase; and (iii) qualitative review summarised as a topic.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tina Diao ◽  
Fareshta Kushzad ◽  
Megh D. Patel ◽  
Megha P. Bindiganavale ◽  
Munam Wasi ◽  
...  

The photopic negative response of the full-field electroretinogram (ERG) is reduced in optic neuropathies. However, technical requirements for measurement and poor classification performance have limited widespread clinical application. Recent advances in hardware facilitate efficient clinic-based recording of the full-field ERG. Time series classification, a machine learning approach, may improve classification by using the entire ERG waveform as the input. In this study, full-field ERGs were recorded in 217 eyes (109 optic neuropathy and 108 controls) of 155 subjects. User-defined ERG features including photopic negative response were reduced in optic neuropathy eyes (p < 0.0005, generalized estimating equation models accounting for age). However, classification of optic neuropathy based on user-defined features was only fair with receiver operating characteristic area under the curve ranging between 0.62 and 0.68 and F1 score at the optimal cutoff ranging between 0.30 and 0.33. In comparison, machine learning classifiers using a variety of time series analysis approaches had F1 scores of 0.58–0.76 on a test data set. Time series classifications are promising for improving optic neuropathy diagnosis using ERG waveforms. Larger sample sizes will be important to refine the models.


Sign in / Sign up

Export Citation Format

Share Document