energy management systems
Recently Published Documents


TOTAL DOCUMENTS

842
(FIVE YEARS 326)

H-INDEX

37
(FIVE YEARS 12)

2022 ◽  
Vol 307 ◽  
pp. 118241
Author(s):  
Mohamed Lotfi ◽  
Tiago Almeida ◽  
Mohammad S. Javadi ◽  
Gerardo J. Osório ◽  
Cláudio Monteiro ◽  
...  

Author(s):  
Nishi Singh ◽  
◽  
M.P.S. Chawla ◽  
Sandeep Bhongade ◽  
◽  
...  

HEMS (home energy management systems) are controllers that manage and coordinate a home's generation, storage, and loads. These controllers are becoming increasingly important. To ensure that distributed energy penetration continues to grow resources are appropriately utilized and the process is not disrupted within the grid[1]. An approach to hems design based on behavioural control approaches is discussed in this paper which do not require accurate models or forecasts and are particularly responsive to changing situations, in this study. In this study, the role of the customer as well as the micro grid in intelligent demand management is demonstrated using MATLAB 2018 Fuzzy tool.[3]


2022 ◽  
pp. 77-90
Author(s):  
Hadjira Belaidi ◽  
Zakaria Rabiai

In these last decades, electrical power grids become more intelligent. Hence, sophisticated software and hardware were introduced to the power grid, which makes it a smart grid. This chapter is an introduction on smart-grid technology; thus, microgrids are explained, and the use of multiagent system in centralized/decentralized energy management systems are discussed and compared. Smart agents are an emerging technology for decentralized computation and data storage. Hence, in this chapter, decentralized energy management system is created basing on multi-agent system technique where sources and loads are considered as separated agents each of them. After that, these sources and load create a microgrid and each microgrid can be considered as an agent. The work proposes an approach for load supplying optimization to decrease the microgrid cost and enhance its efficiency.


2022 ◽  
pp. 1132-1147
Author(s):  
Tesfahun Molla

With the development of smart grid technology, residents can schedule their power consumption pattern in their home to minimize electricity expense, reducing peak-to-average ratio (PAR) and peak load demand. The two-way flow of information between electric utilities and consumers in smart grid opened new areas of applications. In this chapter, the general architectures of the home energy management systems (HEMS) are introduced in a home area network (HAN) based on the smart grid scenario. Efficient scheduling methods for home power usage are discussed. The energy management controller (EMC) receives the demand response (DR) information indicating the Time-of use electricity price (TOUP) through the home gateway (HG). With the DR signal, the EMC achieves an optimal power scheduling scheme that can be delivered to each electric appliance by the HG.


2022 ◽  
pp. 843-868
Author(s):  
Nelson Pinto ◽  
Dario Cruz ◽  
Jânio Monteiro ◽  
Cristiano Cabrita ◽  
Jorge Semião ◽  
...  

In many countries, renewable energy production already represents an important percentage of the total energy that is generated in electrical grids. In order to reach higher levels of integration, demand side management measures are yet required. In fact, different from the legacy electrical grids, where at any given instant the generation levels are adjusted to meet the demand, when using renewable energy sources, the demand must be adapted in accordance with the generation levels, since these cannot be controlled. In order to alleviate users from the burden of individual control of each appliance, energy management systems (EMSs) have to be developed to both monitor the generation and consumption patterns and to control electrical appliances. In this context, the main contribution of this chapter is to present the implementation of such an IoT-based monitoring and control system for microgrids, capable of supporting the development of an EMS.


Sign in / Sign up

Export Citation Format

Share Document