scholarly journals Post Quantum Integral Inequalities of Hermite-Hadamard-Type Associated with Co-Ordinated Higher-Order Generalized Strongly Pre-Invex and Quasi-Pre-Invex Mappings

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 443 ◽  
Author(s):  
Humaira Kalsoom ◽  
Saima Rashid ◽  
Muhammad Idrees ◽  
Farhat Safdar ◽  
Saima Akram ◽  
...  

By using the contemporary theory of inequalities, this study is devoted to proposing a number of refinements inequalities for the Hermite-Hadamard’s type inequality and conclude explicit bounds for two new definitions of ( p 1 p 2 , q 1 q 2 ) -differentiable function and ( p 1 p 2 , q 1 q 2 ) -integral for two variables mappings over finite rectangles by using pre-invex set. We have derived a new auxiliary result for ( p 1 p 2 , q 1 q 2 ) -integral. Meanwhile, by using the symmetry of an auxiliary result, it is shown that novel variants of the the Hermite-Hadamard type for ( p 1 p 2 , q 1 q 2 ) -differentiable utilizing new definitions of generalized higher-order strongly pre-invex and quasi-pre-invex mappings. It is to be acknowledged that this research study would develop new possibilities in pre-invex theory, quantum mechanics and special relativity frameworks of varying nature for thorough investigation.

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 222 ◽  
Author(s):  
Saima Rashid ◽  
Humaira Kalsoom ◽  
Zakia Hammouch ◽  
Rehana Ashraf ◽  
Dumitru Baleanu ◽  
...  

In Hilbert space, we develop a novel framework to study for two new classes of convex function depending on arbitrary non-negative function, which is called a predominating ℏ-convex function and predominating quasiconvex function, with respect to η , are presented. To ensure the symmetry of data segmentation and with the discussion of special cases, it is shown that these classes capture other classes of η -convex functions, η -quasiconvex functions, strongly ℏ-convex functions of higher-order and strongly quasiconvex functions of a higher order, etc. Meanwhile, an auxiliary result is proved in the sense of κ -fractional integral operator to generate novel variants related to the Hermite–Hadamard type for p t h -order differentiability. It is hoped that this research study will open new doors for in-depth investigation in convexity theory frameworks of a varying nature.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Huiju Wang ◽  
Pengcheng Niu

AbstractIn this paper, we establish weighted higher order exponential type inequalities in the geodesic space {({X,d,\mu})} by proposing an abstract higher order Poincaré inequality. These are also new in the non-weighted case. As applications, we obtain a weighted Trudinger’s theorem in the geodesic setting and weighted higher order exponential type estimates for functions in Folland–Stein type Sobolev spaces defined on stratified Lie groups. A higher order exponential type inequality in a connected homogeneous space is also given.


Author(s):  
Muhammad Uzair Awan ◽  
Muhammad Zakria Javed ◽  
Michael Th. Rassias ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

AbstractA new generalized integral identity involving first order differentiable functions is obtained. Using this identity as an auxiliary result, we then obtain some new refinements of Simpson type inequalities using a new class called as strongly (s, m)-convex functions of higher order of $$\sigma >0$$ σ > 0 . We also discuss some interesting applications of the obtained results in the theory of means. In last we present applications of the obtained results in obtaining Simpson-like quadrature formula.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Antonio Accioly ◽  
Wallace Herdy

The equivalence principle (EP) and Schiff’s conjecture are discussed en passant, and the connection between the EP and quantum mechanics is then briefly analyzed. Two semiclassical violations of the classical equivalence principle (CEP) but not of the weak one (WEP), i.e., Greenberger gravitational Bohr atom and the tree-level scattering of different quantum particles by an external weak higher-order gravitational field, are thoroughly investigated afterwards. Next, two quantum examples of systems that agree with the WEP but not with the CEP, namely, COW experiment and free fall in a constant gravitational field of a massive object described by its wave-function Ψ, are discussed in detail. Keeping in mind that, among the four examples focused on in this work only COW experiment is based on an experimental test, some important details related to it are presented as well.


2019 ◽  
Vol 5 (9) ◽  
pp. eaaw9832 ◽  
Author(s):  
Massimiliano Proietti ◽  
Alexander Pickston ◽  
Francesco Graffitti ◽  
Peter Barrow ◽  
Dmytro Kundys ◽  
...  

The scientific method relies on facts, established through repeated measurements and agreed upon universally, independently of who observed them. In quantum mechanics the objectivity of observations is not so clear, most markedly exposed in Wigner’s eponymous thought experiment where two observers can experience seemingly different realities. The question whether the observers’ narratives can be reconciled has only recently been made accessible to empirical investigation, through recent no-go theorems that construct an extended Wigner’s friend scenario with four observers. In a state-of-the-art six-photon experiment, we realize this extended Wigner’s friend scenario, experimentally violating the associated Bell-type inequality by five standard deviations. If one holds fast to the assumptions of locality and free choice, this result implies that quantum theory should be interpreted in an observer-dependent way.


2019 ◽  
Vol 26 (1/2) ◽  
pp. 41-55 ◽  
Author(s):  
Artion Kashuri ◽  
Rozana Liko

The authors discover a new identity concerning differentiable mappings defined on m-invex set via fractional integrals. By using the obtained identity as an auxiliary result, some fractional integral inequalities for generalized relative semi- m-(r;h1,h2)-preinvex mappings by involving generalized Mittag-Leffler function are presented. It is pointed out that some new special cases can be deduced from main results of the paper. Also these inequalities have some connections with known integral inequalities. At the end, some applications to special means for different positive real numbers are provided as well.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Z. Alizadeh ◽  
H. Panahi

We construct two-dimensional integrable and superintegrable systems in terms of the master function formalism and relate them to Mielnik’s and Marquette’s construction in supersymmetric quantum mechanics. For two different cases of the master functions, we obtain two different two-dimensional superintegrable systems with higher order integrals of motion.


2004 ◽  
Vol 19 (03) ◽  
pp. 197-212 ◽  
Author(s):  
C. CHRYSSOMALAKOS ◽  
MICHO ĐURĐEVICH

We study Sorkin's proposal of a generalization of quantum mechanics and find that the theories proposed derive their probabilities from k th order polynomials in additive measures, in the same way that quantum mechanics uses a probability bilinear in the quantum amplitude and its complex conjugate. Two complementary approaches are presented, a C* and a Hopf-algebraic one, illuminating both algebraic and geometric aspects of the problem.


Sign in / Sign up

Export Citation Format

Share Document