invex set
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 11)

H-INDEX

3
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1816
Author(s):  
Muhammad Bilal Khan ◽  
Hari Mohan Srivastava ◽  
Pshtiwan Othman Mohammed ◽  
Juan L. G. Guirao

It is a familiar fact that convex and non-convex fuzzy mappings play a critical role in the study of fuzzy optimization. Due to the behavior of its definition, the idea of convexity plays a significant role in the subject of inequalities. The concepts of convexity and symmetry have a tight connection. We may use whatever we learn from one to the other, thanks to the significant correlation that has developed between both in recent years. Our aim is to consider a new class of fuzzy mappings (FMs) known as strongly preinvex fuzzy mappings (strongly preinvex-FMs) on the invex set. These FMs are more general than convex fuzzy mappings (convex-FMs) and preinvex fuzzy mappings (preinvex-FMs), and when generalized differentiable (briefly, G-differentiable), strongly preinvex-FMs are strongly invex fuzzy mappings (strongly invex-FMs). Some new relationships among various concepts of strongly preinvex-FMs are established and verified with the support of some useful examples. We have also shown that optimality conditions of G-differentiable strongly preinvex-FMs and the fuzzy functional, which is the sum of G-differentiable preinvex-FMs and non G-differentiable strongly preinvex-FMs, can be distinguished by strongly fuzzy variational-like inequalities and strongly fuzzy mixed variational-like inequalities, respectively. In the end, we have established and verified a strong relationship between the Hermite–Hadamard inequality and strongly preinvex-FM. Several exceptional cases are also discussed. These inequalities are a very interesting outcome of our main results and appear to be new ones. The results in this research can be seen as refinements and improvements to previously published findings.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Peide Liu ◽  
Muhammad Bilal Khan ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

In this article, we introduce a new notion of generalized convex fuzzy mapping known as strongly generalized preinvex fuzzy mapping on the invex set. Firstly, we have investigated some properties of strongly generalized preinvex fuzzy mapping. In particular, we establish the equivalence among the strongly generalized preinvex fuzzy mapping, strongly generalized invex fuzzy mapping, and strongly generalized monotonicity. We also prove that the optimality conditions for the sum of G-differentiable preinvex fuzzy mappings and non-G-differentiable strongly generalized preinvex fuzzy mappings can be characterized by strongly generalized fuzzy mixed variational-like inequalities, which can be viewed as a novel and innovative application. Several special cases are discussed. Results obtained in this paper can be viewed as improvement and refinement of previously known results.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Akhlad Iqbal ◽  
Praveen Kumar

<p style='text-indent:20px;'>In this article, we define a new class of functions on Riemannian manifolds, called geodesic <inline-formula><tex-math id="M2">\begin{document}$ \mathcal{E} $\end{document}</tex-math></inline-formula>-prequasi-invex functions. By a suitable example it has been shown that it is more generalized class of convex functions. Some of its characteristics are studied on a nonlinear programming problem. We also define a new class of sets, named geodesic slack invex set. Furthermore, a sufficient optimality condition is obtained for a nonlinear programming problem defined on a geodesic local <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{E} $\end{document}</tex-math></inline-formula>-invex set.</p>


2020 ◽  
Vol 72 (12) ◽  
pp. 1633-1350
Author(s):  
T. S. Du ◽  
C. Y. Luo ◽  
Z. Z. Huang ◽  
A. Kashuri

UDC 517.5 The authors derive a fractional integral equality concerning twice differentiable mappings defined on -invex set. By using this identity, the authors obtain new estimates on generalization of trapezium-like inequalities for mappings whose second order derivatives are generalized relative semi--preinvex via fractional integrals. We also discuss some new special cases which can be deduced from our main results.


Author(s):  
Artion Kashuri ◽  
Rozana Liko

The authors discover a new identity concerning differentiable mappings dened on (m; g; θ)-invex set via k-fractional integrals. By using the obtained identity as an auxiliary result, some new estimates with respect to Hermite–Hadamard type inequalities via k-fractional integrals for generalized-m-(((h1 ∘g)p; (h2 ∘g)q); (η1; η2))-convex mappings are presented. It is pointed out that some new special cases can be deduced from the main results. Also, some applications to special means for different positive real numbers are provided.


Author(s):  
Muhammad Bilal Khan ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

In this paper, a new notion of generalized convex fuzzy mapping is introduced, which is called α-preinvex fuzzy mapping on the α-invex set. We have investigated the characterization of preinvex fuzzy mappings using α-preinvex fuzzy mappings, which can be viewed as a novel and innovative application. Some important and significant special cases are discussed. We have also investigated that the minimum of α-preinvex fuzzy mappings can be characterized by fuzzy α-variational like inequalities.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1054
Author(s):  
Tiziana Ciano ◽  
Massimiliano Ferrara ◽  
Ştefan Mititelu ◽  
Bruno Antonio Pansera

In the paper, we analyze the necessary efficiency conditions for scalar, vectorial and vector fractional variational problems using curvilinear integrals as objectives and we establish sufficient conditions of efficiency to the above variational problems. The efficiency sufficient conditions use of notions of the geodesic invex set and of (strictly, monotonic) ( ρ , b)-geodesic quasiinvex functions.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 443 ◽  
Author(s):  
Humaira Kalsoom ◽  
Saima Rashid ◽  
Muhammad Idrees ◽  
Farhat Safdar ◽  
Saima Akram ◽  
...  

By using the contemporary theory of inequalities, this study is devoted to proposing a number of refinements inequalities for the Hermite-Hadamard’s type inequality and conclude explicit bounds for two new definitions of ( p 1 p 2 , q 1 q 2 ) -differentiable function and ( p 1 p 2 , q 1 q 2 ) -integral for two variables mappings over finite rectangles by using pre-invex set. We have derived a new auxiliary result for ( p 1 p 2 , q 1 q 2 ) -integral. Meanwhile, by using the symmetry of an auxiliary result, it is shown that novel variants of the the Hermite-Hadamard type for ( p 1 p 2 , q 1 q 2 ) -differentiable utilizing new definitions of generalized higher-order strongly pre-invex and quasi-pre-invex mappings. It is to be acknowledged that this research study would develop new possibilities in pre-invex theory, quantum mechanics and special relativity frameworks of varying nature for thorough investigation.


2019 ◽  
Vol 9 (2) ◽  
pp. 231-243
Author(s):  
George Anastassiou ◽  
Artion Kashuri ◽  
Rozana Liko

AbstractThe authors discover a new identity concerning differentiable mappings defined on $$\mathbf{m }$$ m -invex set via general fractional integrals. Using the obtained identity as an auxiliary result, some fractional integral inequalities for generalized-$$\mathbf{m }$$ m -$$((h_{1}^{p},h_{2}^{q});(\eta _{1},\eta _{2}))$$ ( ( h 1 p , h 2 q ) ; ( η 1 , η 2 ) ) -convex mappings by involving an extended generalized Mittag–Leffler function are presented. It is pointed out that some new special cases can be deduced from main results. Also these inequalities have some connections with known integral inequalities. At the end, some applications to special means for different positive real numbers are provided as well.


Sign in / Sign up

Export Citation Format

Share Document