scholarly journals Thin Films of Homochiral Metal–Organic Frameworks for Chiroptical Spectroscopy and Enantiomer Separation

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 686 ◽  
Author(s):  
Chun Li ◽  
Lars Heinke

Chiral nanoporous solids are a fascinating class of materials, allowing efficient enantiomer separation. Here, we review the status, applications, and potential of thin films of homochiral metal–organic frameworks (MOFs). Combining the advantages of MOFs, whose well-defined, crystalline structures can be rationally tuned, with the benefits of thin films enables new opportunities for the characterization of the enantioselectivity, e.g., via chiroptical spectroscopy and straightforward molecular uptake quantifications. By incorporating photoresponsive molecules in the chiral MOF films, the enantioselectivity of the material can be dynamically remote-controlled. The most promising application of MOF films is their use as membranes, where the enantioselective separation of chiral molecules is demonstrated and parameters for further improvements are discussed.

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1552 ◽  
Author(s):  
Weber ◽  
Graniel ◽  
Balme ◽  
Miele ◽  
Bechelany

Improving the selectivity of gas sensors is crucial for their further development. One effective route to enhance this key property of sensors is the use of selective nanomembrane materials. This work aims to present how metal-organic frameworks (MOFs) and thin films prepared by atomic layer deposition (ALD) can be applied as nanomembranes to separate different gases, and hence improve the selectivity of gas sensing devices. First, the fundamentals of the mechanisms and configuration of gas sensors will be given. A selected list of studies will then be presented to illustrate how MOFs and ALD materials can be implemented as nanomembranes and how they can be implemented to improve the operational performance of gas sensing devices. This review comprehensively shows the benefits of these novel selective nanomaterials and opens prospects for the sensing community.


2016 ◽  
Vol 98 ◽  
pp. 70-74
Author(s):  
Andrius Laurikėnas ◽  
Jurgis Barkauskas ◽  
Aivaras Kareiva

In this study, lanthanide elements (Ln3+) and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid (TFBDC) based metal-organic frameworks (MOFs) were synthesized by precipitation and diffusion-controlled precipitation methods. Powders insoluble in aqueous media and polar solvents were obtained. The microstructure and properties of Ln3+ MOFs were evaluated and discussed. X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and fluorescence spectroscopy (FLS) were carried out to characterize Ln3+ MOF's crystallinity, the microstructure, chemical composition and optical properties.


2015 ◽  
Vol 11 (12) ◽  
pp. 5583-5597 ◽  
Author(s):  
S.M.J. Rogge ◽  
L. Vanduyfhuys ◽  
A. Ghysels ◽  
M. Waroquier ◽  
T. Verstraelen ◽  
...  

2016 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Prapti Rahayu ◽  
Witri Wahyu Lestari

<p>Metal-organic frameworks (MOFs) are porous coordination polymer containing bi-or polidentate organic linker coordinated with inorganic part, such as metal oxide cluster or metal cation as node which called as secondary building unit (SBU) to form infinite structure. Due to high porosity and surface area, good thermal stability as well as the availability of unsaturated metal center or the linker influence attracts the interaction with gases, thus MOFs have potential to be applied as hydrogen storage material. One type of MOFs that have been widely studied is [Zn<sub>4</sub>O(benzene-1,4-dicarboxylate)<sub>3</sub>], namely, MOF-5.Various synthesis method have been developed to obtain optimum results. Characterization of MOF-5 from various synthesis method such as crystallinity, capacity, stability, and quantum dot behavior of MOF-5 have been summarized in this review.</p>


2015 ◽  
Vol 17 (35) ◽  
pp. 22721-22725 ◽  
Author(s):  
Xiaojuan Yu ◽  
Zhengbang Wang ◽  
Maria Buchholz ◽  
Nena Füllgrabe ◽  
Sylvain Grosjean ◽  
...  

The energetic barrier for the cis-to-trans isomerization of azobenzene was experimentally investigated by using thin films of azobenzene-containing MOFs as well-defined model system.


2013 ◽  
Vol 17 (12) ◽  
pp. 1139-1156 ◽  
Author(s):  
Beata Girek ◽  
Wanda Sliwa

In this review, free-base and metalloporphyrins, functionalized on meso-positions by quaternary pyridinium units, also referred to as cationic porphyrins, are presented. The article consists of five parts. In the first part free-base porphyrins are described, especially taking account on generation of singlet oxygen; next parts concern metalloporphyrins. The second and third parts deal with zinc and manganese porphyrins, respectively; in the fourth part copper, palladium, and platinum porphyrins are presented. In the fifth part, describing porphyrins with various metal ions an attention is paid to porphyrin metal-organic frameworks (MOFs) and metal-organic materials (MOMs) in which metalloporphyrins are immobilized; syntheses and characterization of obtained products are shown.


Sign in / Sign up

Export Citation Format

Share Document