scholarly journals Limit Cycles of a Class of Polynomial Differential Systems Bifurcating from the Periodic Orbits of a Linear Center

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1346 ◽  
Author(s):  
Amor Menaceur ◽  
Salah Boulaaras ◽  
Salem Alkhalaf ◽  
Shilpi Jain

In this paper, we study the number of limit cycles of a new class of polynomial differential systems, which is an extended work of two families of differential systems in systems considered earlier. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a center using the averaging theory of first and second order.

Author(s):  
Jaume Llibre ◽  
Clàudia Valls

We study the number of limit cycles of polynomial differential systems of the form where g 1 , f 1 , g 2 and f 2 are polynomials of a given degree. Note that when g 1 ( x )= f 1 ( x )=0, we obtain the generalized polynomial Liénard differential systems. We provide an accurate upper bound of the maximum number of limit cycles that the above system can have bifurcating from the periodic orbits of the linear centre , using the averaging theory of first and second order.


2020 ◽  
Vol 30 (04) ◽  
pp. 2050051
Author(s):  
Jaume Llibre ◽  
Arefeh Nabavi ◽  
Marzieh Mousavi

Consider the class of reversible quadratic systems [Formula: see text] with [Formula: see text]. These quadratic polynomial differential systems have a center at the point [Formula: see text] and the circle [Formula: see text] is one of the periodic orbits surrounding this center. These systems can be written into the form [Formula: see text] with [Formula: see text]. For all [Formula: see text] we prove that the averaging theory up to seventh order applied to this last system perturbed inside the whole class of quadratic polynomial differential systems can produce at most two limit cycles bifurcating from the periodic orbits surrounding the center (0,0) of that system. Up to now this result was only known for [Formula: see text] (see Li, 2002; Liu, 2012).


2013 ◽  
Vol 23 (03) ◽  
pp. 1350048 ◽  
Author(s):  
JAUME LLIBRE ◽  
CLAUDIA VALLS

We study the number of limit cycles of the polynomial differential systems of the form [Formula: see text] where g1(x) = εg11(x) + ε2g12(x) + ε3g13(x), g2(x) = εg21(x) + ε2g22(x) + ε3g23(x) and f(x) = εf1(x) + ε2 f2(x) + ε3 f3(x) where g1i, g2i, f2i have degree k, m and n respectively for each i = 1, 2, 3, and ε is a small parameter. Note that when g1(x) = 0 we obtain the generalized Liénard polynomial differential systems. We provide an upper bound of the maximum number of limit cycles that the previous differential system can have bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = -x using the averaging theory of third order.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Ziguo Jiang

We study the number of limit cycles for the quadratic polynomial differential systemsx˙=-y+x2,y˙=x+xyhaving an isochronous center with continuous and discontinuous cubic polynomial perturbations. Using the averaging theory of first order, we obtain that 3 limit cycles bifurcate from the periodic orbits of the isochronous center with continuous perturbations and at least 7 limit cycles bifurcate from the periodic orbits of the isochronous center with discontinuous perturbations. Moreover, this work shows that the discontinuous systems have at least 4 more limit cycles surrounding the origin than the continuous ones.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Amar Makhlouf ◽  
Amor Menaceur

We apply the averaging theory of first and second order to a class of generalized Kukles polynomial differential systems to study the maximum number of limit cycles of these systems.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Amar Makhlouf ◽  
Karthikeyan Rajagobal ◽  
Mohamed Abdalla

By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850175
Author(s):  
Fangfang Jiang ◽  
Zhicheng Ji ◽  
Yan Wang

In this paper, we investigate the number of limit cycles for two classes of discontinuous Liénard polynomial perturbed differential systems. By the second-order averaging theorem of discontinuous differential equations, we provide several criteria on the lower upper bounds for the maximum number of limit cycles. The results show that the second-order averaging theorem of discontinuous differential equations can predict more limit cycles than the first-order one.


2021 ◽  
Author(s):  
Loubna Damene ◽  
Rebiha Benterki

Abstract In this paper we provide all the global phase portraits of the generalized kukles differential systems x= y; y = x + ax8 + bx6y2 + cx4y4 + dx2y6 + ey8; symmetric with respect to the x{axis, with a2 + b2 + c2 + d2 + e2 6= 0, and by using the averaging theory up to seven order, we give the upper bounds of limit cycles which can bifurcate from its center when we perturb it inside the class of all polynomial differential systems of degree 8. The main tool used for proving these results is based in the first integrals of the systems which form the discontinuous piecewise differential systems.


Sign in / Sign up

Export Citation Format

Share Document