scholarly journals Deep Neural Network Algorithm Feedback Model with Behavioral Intelligence and Forecast Accuracy

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1465
Author(s):  
Taikyeong Jeong

When attempting to apply a large-scale database that holds the behavioral intelligence training data of deep neural networks, the classification accuracy of the artificial intelligence algorithm needs to reflect the behavioral characteristics of the individual. When a change in behavior is recognized, that is, a feedback model based on a data connection model is applied, an analysis of time series data is performed by extracting feature vectors and interpolating data in a deep neural network to overcome the limitations of the existing statistical analysis. Using the results of the first feedback model as inputs to the deep neural network and, furthermore, as the input values of the second feedback model, and interpolating the behavioral intelligence data, that is, context awareness and lifelog data, including physical activities, involves applying the most appropriate conditions. The results of this study show that this method effectively improves the accuracy of the artificial intelligence results. In this paper, through an experiment, after extracting the feature vector of a deep neural network and restoring the missing value, the classification accuracy was verified to improve by about 20% on average. At the same time, by adding behavioral intelligence data to the time series data, a new data connection model, the Deep Neural Network Feedback Model, was proposed, and it was verified that the classification accuracy can be improved by about 8 to 9% on average. Based on the hypothesis, the F (X′) = X model was applied to thoroughly classify the training data set and test data set to present a symmetrical balance between the data connection model and the context-aware data. In addition, behavioral activity data were extrapolated in terms of context-aware and forecasting perspectives to prove the results of the experiment.

AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


2019 ◽  
Vol 9 (7) ◽  
pp. 1487 ◽  
Author(s):  
Fei Mei ◽  
Qingliang Wu ◽  
Tian Shi ◽  
Jixiang Lu ◽  
Yi Pan ◽  
...  

Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.


2019 ◽  
Vol 8 (3) ◽  
pp. 4373-4378

The amount of data belonging to different domains are being stored rapidly in various repositories across the globe. Extracting useful information from the huge volumes of data is always difficult due to the dynamic nature of data being stored. Data Mining is a knowledge discovery process used to extract the hidden information from the data stored in various repositories, termed as warehouses in the form of patterns. One of the popular tasks of data mining is Classification, which deals with the process of distinguishing every instance of a data set into one of the predefined class labels. Banking system is one of the realworld domains, which collects huge number of client data on a daily basis. In this work, we have collected two variants of the bank marketing data set pertaining to a Portuguese financial institution consisting of 41188 and 45211 instances and performed classification on them using two data reduction techniques. Attribute subset selection has been performed on the first data set and the training data with the selected features are used in classification. Principal Component Analysis has been performed on the second data set and the training data with the extracted features are used in classification. A deep neural network classification algorithm based on Backpropagation has been developed to perform classification on both the data sets. Finally, comparisons are made on the performance of each deep neural network classifier with the four standard classifiers, namely Decision trees, Naïve Bayes, Support vector machines, and k-nearest neighbors. It has been found that the deep neural network classifier outperforms the existing classifiers in terms of accuracy


2020 ◽  
Vol 9 (1) ◽  
pp. 2726-2733

Extensively used technique to diagnose the epilepsy is EEG. The research objective is to check the variations of frequency found in the epileptic EEG signals.. The EEG dataset were acquired from online database of the Bonn University (BU). Then, butterworth type two filter was implemented to remove the unwanted artifacts from the acquired EEG signals. Further, Multivariate Variational Mode Decomposition (MVMD) methodology was applied to decompose the denoised EEG signals. The signal decomposition helps in finding the necessary information, which required to model the complex time series data. Then, the features were extracted from decomposed signals by using fifteen entropy, linear and statistical features. In addition, ant colony optimization technique was proposed for optimizing the extracted features. The optimized feature vectors were classified by Deep Neural Network (DNN) that includes two circumstances (seizure and healthy), and (Interictal, ictal, and normal). The accuracy attained using the ant colony with deep neural network is 98.12% using the BU EEG dataset, respectively related to the existing models.


Author(s):  
Baoquan Wang ◽  
Tonghai Jiang ◽  
Xi Zhou ◽  
Bo Ma ◽  
Fan Zhao ◽  
...  

For abnormal detection of time series data, the supervised anomaly detection methods require labeled data. While the range of outlier factors used by the existing semi-supervised methods varies with data, model and time, the threshold for determining abnormality is difficult to obtain, in addition, the computational cost of the way to calculate outlier factors from other data points in the data set is also very large. These make such methods difficult to practically apply. This paper proposes a framework named LSTM-VE which uses clustering combined with visualization method to roughly label normal data, and then uses the normal data to train long short-term memory (LSTM) neural network for semi-supervised anomaly detection. The variance error (VE) of the normal data category classification probability sequence is used as outlier factor. The framework enables anomaly detection based on deep learning to be practically applied and using VE avoids the shortcomings of existing outlier factors and gains a better performance. In addition, the framework is easy to expand because the LSTM neural network can be replaced with other classification models. Experiments on the labeled and real unlabeled data sets prove that the framework is better than replicator neural networks with reconstruction error (RNN-RS) and has good scalability as well as practicability.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7109
Author(s):  
Chengying Zhao ◽  
Xianzhen Huang ◽  
Yuxiong Li ◽  
Muhammad Yousaf Iqbal

In recent years, prognostic and health management (PHM) has played an important role in industrial engineering. Efficient remaining useful life (RUL) prediction can ensure the development of maintenance strategies and reduce industrial losses. Recently, data-driven based deep learning RUL prediction methods have attracted more attention. The convolution neural network (CNN) is a kind of deep neural network widely used in RUL prediction. It shows great potential for application in RUL prediction. A CNN is used to extract the features of time-series data according to the spatial feature method. This way of processing features without considering the time dimension will affect the prediction accuracy of the model. On the contrary, the commonly used long short-term memory (LSTM) network considers the timing of the data. However, compared with CNN, it lacks spatial data extraction capabilities. This paper proposes a double-channel hybrid prediction model based on the CNN and a bidirectional LSTM network to avoid those drawbacks. The sliding time window is used for data preprocessing, and an improved piece-wise linear function is used for model validating. The prediction model is evaluated using the C-MAPSS dataset provided by NASA. The predicted results show the proposed prediction model to have a better prediction performance compared with other state-of-the-art models.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 131248-131255 ◽  
Author(s):  
Jordan Yeomans ◽  
Simon Thwaites ◽  
William S. P. Robertson ◽  
David Booth ◽  
Brian Ng ◽  
...  

2021 ◽  
pp. 229255032199701
Author(s):  
Tomas J. Saun

Background: Hand X-rays are ordered in outpatient, inpatient, and emergency settings, the results of which are often initially interpreted by non-radiology trained health care providers. There may be utility in automating upper extremity X-ray analysis to aid with rapid initial analysis. Deep neural networks have been effective in several medical imaging analysis applications. The purpose of this work was to apply a deep learning framework to automatically classify the radiographic positioning of hand X-rays. Methods: A 152-layer deep neural network was trained using the musculoskeletal radiographs data set. This data set contains 6003 hand X-rays. The data set was filtered to remove pediatric X-rays and atypical views. The X-rays were all labeled as either posteroanterior (PA), lateral, or oblique views. A subset of images was set aside for model validation and testing. Data set augmentation was performed, including horizontal and vertical flips, rotations, as well as modifications in image brightness and contrast. The model was evaluated, and performance was reported as a confusion matrix from which accuracy, precision, sensitivity, and specificity were calculated. Results: The augmented training data set consisted of 80 672 images. Their distribution was 38% PA, 35% lateral, and 27% oblique projections. When evaluated on the test data set, the model performed with overall 96.0% accuracy, 93.6% precision, 93.6% sensitivity, and 97.1% specificity. Conclusions: Radiographic positioning of hand X-rays can be effectively classified by a deep neural network. Further work will be performed on localization of abnormalities, automated assessment of standard radiographic measures and eventually on computer-aided diagnosis and management guidance of skeletal pathology.


Author(s):  
Crina Deac ◽  
◽  
Gicu Călin Deac ◽  
Radu Constantin Parpală ◽  
Cicerone Laurentiu Popa ◽  
...  

Identifying the “health state” of the equipment is the domain of condition monitoring. The paper proposes a study of two models: DNN (Deep Neural Network) and CNN (Convolutional Neural Network) over an existent dataset provided by Case Western Reserve University for analyzing vibrations in fault diagnosis. After the model is trained on the windowed dataset using an optimal learning rate, minimizing the cost function, and is tested by computing the loss, accuracy and precision across the results, the weights are saved, and the models can be tested on other real data. The trained model recognizes raw time series data collected by micro electro-mechanical accelerometer sensors and detects anomalies based on former times series entries.


Sign in / Sign up

Export Citation Format

Share Document