scholarly journals Condensing Functions and Approximate Endpoint Criterion for the Existence Analysis of Quantum Integro-Difference FBVPs

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 469
Author(s):  
Shahram Rezapour ◽  
Atika Imran ◽  
Azhar Hussain ◽  
Francisco Martínez ◽  
Sina Etemad ◽  
...  

A nonlinear quantum boundary value problem (q-FBVP) formulated in the sense of quantum Caputo derivative, with fractional q-integro-difference conditions along with its fractional quantum-difference inclusion q-BVP are investigated in this research. To prove the solutions’ existence for these quantum systems, we rely on the notions such as the condensing functions and approximate endpoint criterion (AEPC). Two numerical examples are provided to apply and validate our main results in this research work.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmed Nouara ◽  
Abdelkader Amara ◽  
Eva Kaslik ◽  
Sina Etemad ◽  
Shahram Rezapour ◽  
...  

AbstractIn this research work, a newly-proposed multiterm hybrid multi-order fractional boundary value problem is studied. The existence results for the supposed hybrid fractional differential equation that involves Riemann–Liouville fractional derivatives and integrals of multi-orders type are derived using Dhage’s technique, which deals with a composition of three operators. After that, its stability analysis of Ulam–Hyers type and the relevant generalizations are checked. Some illustrative numerical examples are provided at the end to illustrate and validate our obtained results.


Author(s):  
Yan Tian

AbstractIn this paper, we provide further illustrations of prolate interpolation and pseudospectral differentiation based on the barycentric perspectives. The convergence rates of the barycentric prolate interpolation and pseudospectral differentiation are derived. Furthermore, we propose the new preconditioner, which leads to the well-conditioned prolate collocation scheme. Numerical examples are included to show the high accuracy of the new method. We apply this approach to solve the second-order boundary value problem and Helmholtz problem.


Author(s):  
Sandip Moi ◽  
Suvankar Biswas ◽  
Smita Pal(Sarkar)

AbstractIn this article, some properties of neutrosophic derivative and neutrosophic numbers have been presented. This properties have been used to develop the neutrosophic differential calculus. By considering different types of first- and second-order derivatives, different kind of systems of derivatives have been developed. This is the first time where a second-order neutrosophic boundary-value problem has been introduced with different types of first- and second-order derivatives. Some numerical examples have been examined to explain different systems of neutrosophic differential equation.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


Author(s):  
Johnny Henderson ◽  
Nickolai Kosmatov

AbstractWe apply the theory for u 0-positive operators to obtain eigenvalue comparison results for a fractional boundary value problem with the Caputo derivative.


Author(s):  
Changpin Li ◽  
Fanhai Zeng ◽  
Fawang Liu

AbstractIn this paper, the spectral approximations are used to compute the fractional integral and the Caputo derivative. The effective recursive formulae based on the Legendre, Chebyshev and Jacobi polynomials are developed to approximate the fractional integral. And the succinct scheme for approximating the Caputo derivative is also derived. The collocation method is proposed to solve the fractional initial value problems and boundary value problems. Numerical examples are also provided to illustrate the effectiveness of the derived methods.


Author(s):  
M. Kh. Beshtokov ◽  
M. Z. Khudalov

Recently, to describe various mathematical models of physical processes, fractional differential calculus has been widely used. In this regard, much attention is paid to partial differential equations of fractional order, which are a generalization of partial differential equations of integer order. In this case, various settings are possible.Loaded differential equations in the literature are called equations containing values of a solution or its derivatives on manifolds of lower dimension than the dimension of the definitional domain of the desired function. Currently, numerical methods for solving loaded partial differential equations of integer and fractional (porous media) orders are widely used, since analytical solving methods for solving are impossible.In the paper, we study the initial-boundary value problem for the loaded differential heat equation with a fractional Caputo derivative and conditions of the third kind. To solve the problem on the assumption that there is an exact solution in the class of sufficiently smooth functions by the method of energy inequalities, a priori estimates are obtained both in the differential and difference interpretations. The obtained inequalities mean the uniqueness of the solution and the continuous dependence of the solution on the input data of the problem. Due to the linearity of the problem under consideration, these inequalities allow us to state the convergence of the approximate solution to the exact solution at a rate equal to the approximation order of the difference scheme. An algorithm for the numerical solution of the problem is constructed.


2019 ◽  
Vol 22 (3) ◽  
pp. 750-766 ◽  
Author(s):  
Xiangyun Meng ◽  
Martin Stynes

Abstract We consider a nonlinear boundary problem whose highest-order derivative is a Caputo derivative of order α with 1 < α < 2. Properties of its associated Green’s function are derived. These properties enable us to deduce sufficient conditions for the existence of a positive solution to the boundary value problem and to prove a Lyapunov inequality for the problem. Our results sharpen and extend earlier results of other authors.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Xiangshan Kong ◽  
Haitao Li

This paper investigates the solvability of a class of higher-order fractional two-point boundary value problem (BVP), and presents several new results. First, Green’s function of the considered BVP is obtained by using the property of Caputo derivative. Second, based on Schaefer’s fixed point theorem, the solvability of the considered BVP is studied, and a sufficient condition is presented for the existence of at least one solution. Finally, an illustrative example is given to support the obtained new results.


Sign in / Sign up

Export Citation Format

Share Document