scholarly journals Dense and σ-Porous Subsets in Some Families of Darboux Functions

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 759
Author(s):  
Gertruda Ivanova ◽  
Irena Domnik

G. Ivanova and E. Wagner-Bojakowska shown that the set of Darboux quasi-continuous functions with nowhere dense set of discontinuity points is dense in the metric space of Darboux quasi-continuous functions with the supremum metric. We prove that this set also is σ-strongly porous in such space. We obtain the symmetrical result for the family of strong Świątkowski functions, i.e., that the family of strong Świątkowski functions with nowhere dense set of discontinuity points is dense (thus, “large”) and σ-strongly porous (thus, asymmetrically, “small”) in the family of strong Świątkowski functions.

2017 ◽  
Vol 25 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Flavian Georgescu

Abstract In this paper we introduce the concept of iterated function system consisting of generalized convex contractions. More precisely, given n ∈ ℕ*, an iterated function system consisting of generalized convex contractions on a complete metric space (X; d) is given by a finite family of continuous functions (fi)i ∈I , fi : X → X, having the property that for every ω ∈ λn(I) there exists a family of positive numbers (aω;υ)υ∈Vn(I) such that: x; y ∈ X. Here λn(I) represents the family of words with n letters from I, Vn(I) designates the family of words having at most n - 1 letters from I, while, if ω1 = ω1ω2 ... ωp, by fω we mean fω1 ⃘fω2 ⃘... ⃘ fωp. Denoting such a system by S = ((X; d); n; (fi)i∈I), one can consider the function FS : K(X) → K(X) described by , for all B ∈ K(X), where K(X) means the set of non-empty compact subsets of X. Our main result states that FS is a Picard operator for every iterated function system consisting of generalized convex contractions S.


2013 ◽  
Vol 78 (4) ◽  
pp. 1055-1085 ◽  
Author(s):  
Alexander G. Melnikov

AbstractWe say that an uncountable metric space is computably categorical if every two computable structures on this space are equivalent up to a computable isometry. We show that Cantor space, the Urysohn space, and every separable Hilbert space are computably categorical, but the space [0, 1] of continuous functions on the unit interval with the supremum metric is not. We also characterize computably categorical subspaces of ℝn, and give a sufficient condition for a space to be computably categorical. Our interest is motivated by classical and recent results in computable (countable) model theory and computable analysis.


2016 ◽  
Vol 65 (1) ◽  
pp. 151-159
Author(s):  
Gertruda Ivanova ◽  
Aleksandra Karasińska ◽  
Elżbieta Wagner-Bojakowska

Abstract We prove that the family Q of quasi-continuous functions is a strongly porous set in the space Ba of functions having the Baire property. Moreover, the family DQ of all Darboux quasi-continuous functions is a strongly porous set in the space DBa of Darboux functions having the Baire property. It implies that each family of all functions having the A-Darboux property is strongly porous in DBa if A has the (∗)-property.


2017 ◽  
Vol 13 (3) ◽  
pp. 7264-7271
Author(s):  
Arafa A Nasefa ◽  
R Mareay

Recently there has been some interest in the notion of a locally closed subset of a topo- logical space. In this paper, we introduce a useful characterizations of simply open sets in terms of the ideal of nowhere dense set. Also, we study a new notion of functions in topo- logical spaces known as dual simply-continuous functions and some of their fundamental properties are investigated. Finally, a new type of simply open sets is introduced.


2020 ◽  
Vol 8 (1) ◽  
pp. 166-181
Author(s):  
Rebekah Jones ◽  
Panu Lahti

AbstractWe prove a duality relation for the moduli of the family of curves connecting two sets and the family of surfaces separating the sets, in the setting of a complete metric space equipped with a doubling measure and supporting a Poincaré inequality. Then we apply this to show that quasiconformal mappings can be characterized by the fact that they quasi-preserve the modulus of certain families of surfaces.


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 56 ◽  
Author(s):  
Qasim Mahmood ◽  
Abdullah Shoaib ◽  
Tahair Rasham ◽  
Muhammad Arshad

The purpose of this paper is to find out fixed point results for the family of multivalued mappings fulfilling a generalized rational type F-contractive conditions on a closed ball in complete dislocated b-metric space. An application to the system of integral equations is presented to show the novelty of our results. Our results extend several comparable results in the existing literature.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Beata Derȩgowska ◽  
Beata Gryszka ◽  
Karol Gryszka ◽  
Paweł Wójcik

AbstractThe investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector valued continuous functions $$\mathcal {C}(\mathcal {T},E)$$ C ( T , E ) , where $$\mathcal {T}$$ T is a compact metric space. The aim of this paper is to present a description of semi-smooth points in spaces of continuous functions $$\mathcal {C}_0(\mathcal {T},E)$$ C 0 ( T , E ) (instead of smooth points). Moreover, we also find necessary and sufficient condition for semi-smoothness in the general case.


2008 ◽  
Vol 15 (1) ◽  
pp. 39-43
Author(s):  
Ljubomir B. Ćirić ◽  
Nebojša T. Nikolić

Abstract Let (𝑋, 𝑑) be a convex metric space, 𝐶 be a closed and convex subset of 𝑋 and let 𝐵(𝐶) be the family of all nonempty bounded subsets of 𝐶. In this paper some results are obtained on the convergence of the Ishikawa iterates associated with a pair of multi-valued mappings 𝑆,𝑇 : 𝐶 → 𝐵(𝐶) which satisfy condition (2.1) below.


Sign in / Sign up

Export Citation Format

Share Document