scholarly journals A Driver and Control Method for Primary Stator Discontinuous Segmented-PMLSM

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2216
Author(s):  
Mingyi Wang ◽  
Kai Kang ◽  
Chengming Zhang ◽  
Liyi Li

In recent years, with the development of the permanent magnet linear synchronous motor (PMLSM), the application of PMLSM has not been limited only to the high-end equipment field; the primary stator discontinuous segmented-PMLSM (DSPMLSM), which consists of multiple primary stators and one mover, has also been applied in long-distance transportation systems, such as electromagnetic launch, high precision material transport, etc. Compared with the symmetry phase parameters of conventional PMLSM, the stationary electrical parameters vary when the mover enters and leaves the primary stators (the inter-segment region). At the same time, due to the sectional power supply, there will be primary suction or pulling force when the mover enters and exits the inter-segment region, which will lead to large thrust fluctuation and result in lager position error. This paper proposed a related drive and control strategy about the DSPMLSM system, which improved the position tracking accuracy during the full range of DSPMLSM. First, the parameter variation between stator segments has been analyzed through finite element simulation of DSPMLSM. Then, a double closed-loop series control structure of position-current is designed, in which a PI-Lead controller was adopted for the position loop and a PI controller was adopted for the current loop. In order to improve the position tracking accuracy of DSPMLSM, a thrust fluctuation extended state observer (TFESO) was adopted to observe and compensate the complex thrust disturbances such as cogging force, friction and other unmodeled thrust fluctuation. At last, the DSPMLSM experimental stage was established, and the experimental results show that the proposed driver and control theory can effectively improve the position tracking accuracy of the whole stroke of DSPMLSM.

2013 ◽  
Vol 389 ◽  
pp. 583-589
Author(s):  
Xiao Long Zheng ◽  
Bang Jie Li ◽  
Zhi Fu Shi

In order to further improve the performance of the air launched ballistic missile, a full range of air launched method had been given. For the full range launch program faced initial roll angle and initial lateral speed problem, researched the initial roll angle control mode processing technology in the virtual body coordinates and correct the lateral initial velocity method used angle of sideslip flight procedures. Given the ballistic flight simulation Using the proposed method and technology, and verified the feasibility of the ballistic missile program of all-round air launched.


2011 ◽  
Vol 131 (11) ◽  
pp. 896-904
Author(s):  
Yuji Tamura ◽  
Shinji Takasaki ◽  
Yasuyuki Miyazaki ◽  
Hideo Takeda ◽  
Shoichi Irokawa ◽  
...  

JEMAP ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Albertus Reynaldo Kurniawan ◽  
Bayu Prestianto

Quality control becomes an important key for companies in suppressing the number of defective produced products. Six Sigma is a quality control method that aims to minimize defective products to the lowest point or achieve operational performance with a sigma value of 6 with only yielding 3.4 defective products of 1 million product. Stages of Six Sigma method starts from the DMAIC (Define, Measure, Analyze, Improve and Control) stages that help the company in improving quality and continuous improvement. Based on the results of research on baby clothes products, data in March 2018 the percentage of defective products produced reached 1.4% exceeding 1% tolerance limit, with a Sigma value of 4.14 meaning a possible defect product of 4033.39 opportunities per million products. In the pareto diagram there were 5 types of CTQ (Critical to Quality) such as oblique obras, blobor screen printing, there is a fabric / head cloth code on the final product, hollow fabric / thin fabric fiber, and dirty cloth. The factors caused quality problems such as Manpower, Materials, Environtment, and Machine. Suggestion for consideration of company improvement was continuous improvement on every existing quality problem like in Manpower factor namely improving comprehension, awareness of employees in producing quality product and improve employee's accuracy, Strength Quality Control and give break time. Materials by making the method of cutting the fabric head, the Machine by scheduling machine maintenance and the provision of needle containers at each employees desk sewing and better environtment by installing exhaust fan and renovating the production room.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


2018 ◽  
Vol 28 (6) ◽  
pp. 1887-1891
Author(s):  
Todor Kalinov

Management and Command253 are two different words and terms, but military structures use them as synonyms. Military commanders’ authorities are almost equal in meaning to civilian managers’ privileges and power. Comparison between military command and the civilian management system structure, organization, and way of work shows almost full identity and overlapping. The highest in scale and size military systems are national ministries of defense and multinational military alliances and coalitions. Military systems at this level combine military command structures with civilian political leadership and support elements. Therefore, they incorporate both military command and civilian management organizations without any complications, because their nature originated from same source and have similar framework and content. Management of organizations requires communication in order to plan, coordinate, lead, control, and conduct all routine or extraordinary activities. Immediate long-distance communications originated from telegraphy, which was firstly applied in 19th century. Later, long-distance communications included telephony, aerial transmitting, satellite, and last but not least internet data exchange. They allowed immediate exchange of letters, voice and images, bringing to new capabilities of the managers. Their sophisticated technical base brought to new area of the military command and civilian management structures. These area covered technical and operational parts of communications, and created engineer sub-field of science, that has become one of the most popular educations, worldwide. Communications were excluded from the military command and moved to separate field, named Computers and Communications. A historic overview and analysis of the command and management structures and requirements shows their relationships, common origin, and mission. They have significant differences: management and control are based on humanities, natural and social sciences, while communications are mainly based on engineering and technology. These differences do not create enough conditions for defragmentation of communications from the management structures. They exist together in symbiosis and management structures need communications in order to exist and multiply their effectiveness and efficiency. Future defragmentation between military command and communications will bring risks of worse coordination, need for more human resources, and worse end states. These risks are extremely negative for nations and should be avoided by wide appliance of the education and science among nowadays and future leaders, managers, and commanders.


2014 ◽  
Vol 644-650 ◽  
pp. 879-883
Author(s):  
Jing Jing Yu

In various forms of movement of finger rehabilitation training, Continuous Passive Motion (CPM) of single degree of freedom (1 DOF) has outstanding application value. Taking classic flexion and extension movement for instance, this study collected the joint angle data of finger flexion and extension motion by experiments and confirmed that the joint motion of finger are not independent of each other but there is certain rule. This paper studies the finger joint movement rule from qualitative and quantitative aspects, and the conclusion can guide the design of the mechanism and control method of finger rehabilitation training robot.


2003 ◽  
Vol 785 ◽  
Author(s):  
Seth S. Kessler ◽  
S. Mark Spearing

ABSTRACTEmbedded structural health monitoring systems are envisioned to be an important component of future transportation systems. One of the key challenges in designing an SHM system is the choice of sensors, and a sensor layout, which can detect unambiguously relevant structural damage. This paper focuses on the relationship between sensors, the materials of which they are made, and their ability to detect structural damage. Sensor selection maps have been produced which plot the capabilities of the full range of available sensor types vs. the key performance metrics (power consumption, resolution, range, sensor size, coverage). This exercise resulted in the identification of piezoceramic Lamb wave transducers as the sensor of choice. Experimental results are presented for the detailed selection of piezoceramic materials to be used as Lamb wave transducers.


2020 ◽  
pp. 107754632098246
Author(s):  
Peiling Cui ◽  
Fanjun Zheng ◽  
Xinxiu Zhou ◽  
Wensi Li

Permanent magnet synchronous motor always suffers from air gap field distortion and inverter nonlinearity, which lead to the harmonic components in motor currents. A resonant controller is a remarkable control method to eliminate periodic disturbance, whereas the conventional resonant controller is limited by narrow bandwidth and phase lag. This article presents a novel resonant controller with a precise phase compensation method for a permanent magnet synchronous motor to suppress the current harmonics. Based on the analysis of the current harmonic characteristics, the proposed resonant controller for rejecting a set of selected current harmonic components is plugged in the current loop, and it is parallel to the traditional proportional–integral controller. Furthermore, the stability analysis of the proposed resonant controller is investigated, and the parameters are tuned to get a satisfactory performance. Compared with the conventional resonant controller, the proposed resonant controller can achieve good steady-state performance, dynamic performance, and frequency adaptivity performance, simultaneously. Finally, the experimental results demonstrate the effectiveness of the proposed suppression scheme.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3222
Author(s):  
Duc Nguyen Huu

Increasing offshore wind farms are rapidly installed and planned. However, this will pose a bottle neck challenge for long-distance transmission as well as inherent variation of their generating power outputs to the existing AC grid. VSC-HVDC links could be an effective and flexible method for this issue. With the growing use of voltage source converter high-voltage direct current (VSC-HVDC) technology, the hybrid VSC-HVDC and AC system will be a next-generation transmission network. This paper analyzes the contribution of the multi VSC-HVDC system on the AC voltage stability of the hybrid system. A key contribution of this research is proposing a novel adaptive control approach of the VSC-HVDC as a so-called dynamic reactive power booster to enhance the voltage stability of the AC system. The core idea is that the novel control system is automatically providing a reactive current based on dynamic frequency of the AC system to maximal AC voltage support. Based on the analysis, an adaptive control method applied to the multi VSC-HVDC system is proposed to realize maximum capacity of VSC for reactive power according to the change of the system frequency during severe faults of the AC grid. A representative hybrid AC-DC network based on Germany is developed. Detailed modeling of the hybrid AC-DC network and its proposed control is derived in PSCAD software. PSCAD simulation results and analysis verify the effective performance of this novel adaptive control of VSC-HVDC for voltage support. Thanks to this control scheme, the hybrid AC-DC network can avoid circumstances that lead to voltage instability.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1015
Author(s):  
Mingfei Huang ◽  
Yongting Deng ◽  
Hongwen Li ◽  
Jing Liu ◽  
Meng Shao ◽  
...  

This paper concentrates on a robust resonant control strategy of a permanent magnet synchronous motor (PMSM) for electric drivers with model uncertainties and external disturbances to improve the control performance of the current loop. Firstly, to reduce the torque ripple of PMSM, the resonant controller with fractional order (FO) calculus is introduced. Then, a robust two degrees-of-freedom (Robust-TDOF) control strategy was designed based on the modified resonant controller. Finally, by combining the two control methods, this study proposes an enhanced Robust-TDOF regulation method, named as the robust two degrees-of-freedom resonant controller (Robust-TDOFR), to guarantee the robustness of model uncertainty and to further improve the performance with minimized periodic torque ripples. Meanwhile, a tuning method was constructed followed by stability and robust stability analysis. Furthermore, the proposed Robust-TDOFR control method was applied in the current loop of a PMSM to suppress the periodic current harmonics caused by non-ideal factors of inverter and current measurement errors. Finally, simulations and experiments were performed to validate our control strategy. The simulation and experimental results showed that the THDs (total harmonic distortion) of phase current decreased to a level of 0.69% and 5.79% in the two testing environments.


Sign in / Sign up

Export Citation Format

Share Document