scholarly journals Stochastic Comparisons of Lifetimes of Series and Parallel Systems with Dependent Heterogeneous MOTL-G Components under Random Shocks

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2248
Author(s):  
Liang Jiao ◽  
Rongfang Yan

To measure the magnitude among random variables, we can apply a partial order connection defined on a distribution class, which contains the symmetry. In this paper, based on majorization order and symmetry or asymmetry functions, we carry out stochastic comparisons of lifetimes of two series (parallel) systems with dependent or independent heterogeneous Marshall–Olkin Topp Leone G (MOTL-G) components under random shocks. Further, the effect of heterogeneity of the shape parameters of MOTL-G components and surviving probabilities from random shocks on the reliability of series and parallel systems in the sense of the usual stochastic and hazard rate orderings is investigated. First, we establish the usual stochastic and hazard rate orderings for the lifetimes of series and parallel systems when components are statistically dependent. Second, we also adopt the usual stochastic ordering to compare the lifetimes of the parallel systems under the assumption that components are statistically independent. The theoretical findings show that the weaker heterogeneity of shape parameters in terms of the weak majorization order results in the larger reliability of series and parallel systems and indicate that the more heterogeneity among the transformations of surviving probabilities from random shocks according to the weak majorization order leads to larger lifetimes of the parallel system. Finally, several numerical examples are provided to illustrate the main results, and the reliability of series system is analyzed by the real-data and proposed methods.

Author(s):  
Ting Zhang ◽  
Yiying Zhang ◽  
Peng Zhao

This paper deals with stochastic comparisons of the largest order statistics arising from two sets of independent and heterogeneous gamma samples. It is shown that the weak supermajorization order between the vectors of scale parameters together with the weak submajorization order between the vectors of shape parameters imply the reversed hazard rate ordering between the corresponding maximum order statistics. We also establish sufficient conditions of the usual stochastic ordering in terms of the p-larger order between the vectors of scale parameters and the weak submajorization order between the vectors of shape parameters. Numerical examples and applications in auction theory and reliability engineering are provided to illustrate these results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fatih Kızılaslan

PurposeThe purpose of this paper is to investigate the stochastic comparisons of the parallel system with independent heterogeneous Gumbel components and series and parallel systems with independent heterogeneous truncated Gumbel components in terms of various stochastic orderings.Design/methodology/approachThe obtained results in this paper are obtained by using the vector majorization methods and results. First, the components of series and parallel systems are heterogeneous and having Gumbel or truncated Gumbel distributions. Second, multiple-outlier truncated Gumbel models are discussed for these systems. Then, the relationship between the systems having Gumbel components and Weibull components are considered. Finally, Monte Carlo simulations are performed to illustrate some obtained results.FindingsThe reversed hazard rate and likelihood ratio orderings are obtained for the parallel system of Gumbel components. Using these results, similar new results are derived for the series system of Weibull components. Stochastic comparisons for the series and parallel systems having truncated Gumbel components are established in terms of hazard rate, likelihood ratio and reversed hazard rate orderings. Some new results are also derived for the series and parallel systems of upper-truncated Weibull components.Originality/valueTo the best of our knowledge thus far, stochastic comparisons of series and parallel systems with Gumbel or truncated Gumble components have not been considered in the literature. Moreover, new results for Weibull and upper-truncated Weibull components are presented based on Gumbel case results.


2020 ◽  
Vol 57 (3) ◽  
pp. 832-852
Author(s):  
Lu Li ◽  
Qinyu Wu ◽  
Tiantian Mao

AbstractWe investigate stochastic comparisons of parallel systems (corresponding to the largest-order statistics) with respect to the reversed hazard rate and likelihood ratio orders for the proportional reversed hazard rate (PRHR) model. As applications of the main results, we obtain the equivalent characterizations of stochastic comparisons with respect to the reversed hazard rate and likelihood rate orders for the exponentiated generalized gamma and exponentiated Pareto distributions. Our results recover and strengthen some recent results in the literature.


2013 ◽  
Vol 28 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Weiyong Ding ◽  
Gaofeng Da ◽  
Xiaohu Li

This paper carries out stochastic comparisons of series and parallel systems with independent and heterogeneous components in the sense of the hazard rate order, the reversed hazard rate order, and the likelihood ratio order. The main results extend and strengthen the corresponding ones by Misra and Misra [18] and by Ding, Zhang, and Zhao [8]. Meanwhile, the results on the hazard rate order of parallel systems and the reversed hazard order of series systems serve as nice supplements to Theorem 16.B.1 of Boland and Proschan [4] and Theorem 3.2 of Nanda and Shaked [20], respectively.


2000 ◽  
Vol 37 (4) ◽  
pp. 1123-1128 ◽  
Author(s):  
Baha-Eldin Khaledi ◽  
Subhash Kochar

Let X1,…,Xn be independent exponential random variables with Xi having hazard rate . Let Y1,…,Yn be a random sample of size n from an exponential distribution with common hazard rate ̃λ = (∏i=1nλi)1/n, the geometric mean of the λis. Let Xn:n = max{X1,…,Xn}. It is shown that Xn:n is greater than Yn:n according to dispersive as well as hazard rate orderings. These results lead to a lower bound for the variance of Xn:n and an upper bound on the hazard rate function of Xn:n in terms of . These bounds are sharper than those obtained by Dykstra et al. ((1997), J. Statist. Plann. Inference65, 203–211), which are in terms of the arithmetic mean of the λis. Furthermore, let X1*,…,Xn∗ be another set of independent exponential random variables with Xi∗ having hazard rate λi∗, i = 1,…,n. It is proved that if (logλ1,…,logλn) weakly majorizes (logλ1∗,…,logλn∗, then Xn:n is stochastically greater than Xn:n∗.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 856
Author(s):  
Narayanaswamy Balakrishnan ◽  
Ghobad Barmalzan ◽  
Sajad Kosari

In this paper, we consider stochastic comparisons of parallel systems with proportional reversed hazard rate (PRHR) distributed components equipped with starting devices. By considering parallel systems with two components that PRHR and starting devices, we prove the hazard rate and reversed hazard rate orders. These results are then generalized for such parallel systems with n components in terms of usual stochastic order. The establish results are illustrated with some examples.


2015 ◽  
Vol 29 (4) ◽  
pp. 597-621 ◽  
Author(s):  
Peng Zhao ◽  
Yanni Hu ◽  
Yiying Zhang

In this paper, we carry out stochastic comparisons of the largest order statistics arising from multiple-outlier gamma models with different both shape and scale parameters in the sense of various stochastic orderings including the likelihood ratio order, star order and dispersive order. It is proved, among others, that the weak majorization order between the scale parameter vectors along with the majorization order between the shape parameter vectors imply the likelihood ratio order between the largest order statistics. A quite general sufficient condition for the star order is presented. The new results established here strengthen and generalize some of the results known in the literature. Numerical examples and applications are also provided to explicate the theoretical results.


2008 ◽  
Vol 22 (3) ◽  
pp. 473-474 ◽  
Author(s):  
Subhash Kochar ◽  
Maochao Xu

In our article [3] we have found a gap in the middle of the proof of Theorem 3.2. Therefore, we do not know whether Theorem 3.2 is true for the reverse hazard rate order. However, we could prove the following weaker result for the stochastic order.


2000 ◽  
Vol 37 (04) ◽  
pp. 1123-1128 ◽  
Author(s):  
Baha-Eldin Khaledi ◽  
Subhash Kochar

Let X 1,…,X n be independent exponential random variables with X i having hazard rate . Let Y 1,…,Y n be a random sample of size n from an exponential distribution with common hazard rate ̃λ = (∏ i=1 n λ i )1/n , the geometric mean of the λis. Let X n:n = max{X 1,…,X n }. It is shown that X n:n is greater than Y n:n according to dispersive as well as hazard rate orderings. These results lead to a lower bound for the variance of X n:n and an upper bound on the hazard rate function of X n:n in terms of . These bounds are sharper than those obtained by Dykstra et al. ((1997), J. Statist. Plann. Inference 65, 203–211), which are in terms of the arithmetic mean of the λ i s. Furthermore, let X 1 *,…,X n ∗ be another set of independent exponential random variables with X i ∗ having hazard rate λ i ∗, i = 1,…,n. It is proved that if (logλ1,…,logλ n ) weakly majorizes (logλ1 ∗,…,logλ n ∗, then X n:n is stochastically greater than X n:n ∗.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 981
Author(s):  
Patricia Ortega-Jiménez ◽  
Miguel A. Sordo ◽  
Alfonso Suárez-Llorens

The aim of this paper is twofold. First, we show that the expectation of the absolute value of the difference between two copies, not necessarily independent, of a random variable is a measure of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively dependent through stochastic ordering, this measure is subadditive. The second purpose of this paper is to provide sufficient conditions for comparing several distances between pairs of random variables (with possibly different distribution functions) in terms of various stochastic orderings. Applications in actuarial and financial risk management are given.


Sign in / Sign up

Export Citation Format

Share Document