scholarly journals On the Unique Solvability of Incomplete Cauchy Type Problems for a Class of Multi-Term Equations with the Riemann–Liouville Derivatives

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Vladimir E. Fedorov ◽  
Wei-Shih Du ◽  
Mikhail M. Turov

Incomplete Cauchy-type problems are considered for linear multi-term equations solved with respect to the highest derivative in Banach spaces with fractional Riemann–Liouville derivatives and with linear closed operators at them. Some new existence and uniqueness theorems for solutions are presented explicitly and the analyticity of the solutions of the homogeneous equations are also shown. The asymmetry of the Cauchy-type problem under study is expressed in the presence of a so-called defect, which shows the number of lower-order initial conditions that should not be set when setting the problem. As applications, our abstract results are used in the study of a class of initial-boundary value problems for multi-term equations with Riemann–Liouville derivatives in time and with polynomials of a self-adjoint elliptic differential operator with respect to spatial variables.

2019 ◽  
Vol 65 (3) ◽  
pp. 513-546
Author(s):  
A V Faminskii

In this paper, we consider questions of inner regularity of weak solutions of initial-boundary value problems for the Zakharov-Kuznetsov equation with two spatial variables. The initial function is assumed to be irregular, and the main parameter governing the regularity is the decay rate of the initial function at infinity. The main results of the paper are obtained for the problem on a semistrip. In this problem, different types of initial conditions (e. g., Dirichlet or Neumann conditions) influence the inner regularity. We also give a survey of earlier results for other types of areas: a plane, a half-plane, and a strip.


2018 ◽  
Vol 21 (1) ◽  
pp. 200-219 ◽  
Author(s):  
Fatma Al-Musalhi ◽  
Nasser Al-Salti ◽  
Erkinjon Karimov

AbstractDirect and inverse source problems of a fractional diffusion equation with regularized Caputo-like counterpart of a hyper-Bessel differential operator are considered. Solutions to these problems are constructed based on appropriate eigenfunction expansions and results on existence and uniqueness are established. To solve the resultant equations, a solution to such kind of non-homogeneous fractional differential equation is also presented.


2017 ◽  
Vol 17 (2) ◽  
pp. 46-56
Author(s):  
L.S. Pulkina ◽  
M.V. Strigun

In this paper, the initial-boundary value problems for hyperbolic equationwith nonlinear boundary conditions are considered. Existence and uniqueness ofgeneralized solution are proved.


2019 ◽  
Vol 17 (1) ◽  
pp. 1737-1749
Author(s):  
Ahmed M. A. El-Sayed ◽  
Sheren A. Abd El-Salam

Abstract Here, a coupled system of nonlinear weighted Cauchy-type problem of a diffre-integral equations of fractional order will be considered. We study the existence of at least one integrable solution of this system by using Schauder fixed point Theorem. The continuous dependence of the uniqueness of the solution is proved.


2011 ◽  
Vol 18 (3) ◽  
pp. 441-463
Author(s):  
Gia Avalishvili ◽  
Mariam Avalishvili

Abstract The present paper deals with nonclassical initial-boundary value problems for parabolic equations and systems and their generalizations in abstract spaces. Nonclassical problems with nonlocal initial conditions for an abstract first-order evolution equation with time-dependent operator are considered, the existence and uniqueness results are proved and the algorithm of approximation of nonlocal problems by a sequence of classical problems is constructed. Applications of the obtained general results to initial-boundary value problems for parabolic equations and systems are considered.


Author(s):  
G. V. Sandrakov ◽  
A. L. Hulianytskyi

Initial boundary value problems for nonstationary equations of diffusion and filtration in weakly porous media are considered. Assertions about the solvability of such problems and the corresponding homogenized problems with convolutions are given. These statements are proved for general initial data and inhomogeneous initial conditions and are generalizations of classical results on the solvability of initial-boundary value problems for the heat equation. The proofs use the methods of a priori estimates and the well-known Agranovich–Vishik method, developed to study parabolic problems of general type.


2003 ◽  
Vol 13 (12) ◽  
pp. 1745-1766 ◽  
Author(s):  
A. FAVINI ◽  
A. LORENZI

We prove a global existence and uniqueness result for the recovery of unknown scalar kernels in linear singular first-order integro-differential initial-boundary value problems in Banach spaces. To this end use is made of suitable weighted Lp-spaces. Finally, we give a few applications to explicit singular partial integro-differential equations of parabolic type.


Sign in / Sign up

Export Citation Format

Share Document