regularity of weak solutions
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 39)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Abdelaziz Hellal

This paper is concerned with the study of the nonlinear elliptic equations in a bounded subset Ω ⊂ RN Au = f, where A is an operator of Leray-Lions type acted from the space W1,p(·)0(Ω) into its dual. when the second term f belongs to Lm(·), with m(·) > 1 being small. we prove existence and regularity of weak solutions for this class of problems p(x)-growth conditions. The functional framework involves Sobolev spaces with variable exponents as well as Lebesgue spaces with variable exponents.


CAUCHY ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 136-141
Author(s):  
Khoirunisa Khoirunisa ◽  
Corina Karim ◽  
M. Muslikh

In this paper, the Hölder regularity of weak solutions for singular parabolic systems of p-Laplacian type is investigated. By the Poincare inequality, we show that its weak solutions within Hölder space.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jacques Giacomoni ◽  
Deepak Kumar ◽  
Konijeti Sreenadh

Abstract In this article, we deal with the global regularity of weak solutions to a class of problems involving the fractional ( p , q ) {(p,q)} -Laplacian, denoted by ( - Δ ) p s 1 + ( - Δ ) q s 2 {(-\Delta)^{s_{1}}_{p}+(-\Delta)^{s_{2}}_{q}} for s 2 , s 1 ∈ ( 0 , 1 ) {s_{2},s_{1}\in(0,1)} and 1 < p , q < ∞ {1<p,q<\infty} . We establish completely new Hölder continuity results, up to the boundary, for the weak solutions to fractional ( p , q ) {(p,q)} -problems involving singular as well as regular nonlinearities. Moreover, as applications to boundary estimates, we establish a new Hopf-type maximum principle and a strong comparison principle in both situations.


2021 ◽  
Vol 62 (9) ◽  
pp. 091509
Author(s):  
Yanqing Wang ◽  
Baoquan Yuan ◽  
Jiefeng Zhao ◽  
Daoguo Zhou

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1336
Author(s):  
Alfonsina Tartaglione

One of the most intriguing issues in the mathematical theory of the stationary Navier–Stokes equations is the regularity of weak solutions. This problem has been deeply investigated for homogeneous fluids. In this paper, the regularity of the solutions in the case of not constant viscosity is analyzed. Precisely, it is proved that for a bounded domain Ω⊂R2, a weak solution u∈W1,q(Ω) is locally Hölder continuous if q=2, and Hölder continuous around x, if q∈(1,2) and |μ(x)−μ0| is suitably small, with μ0 positive constant; an analogous result holds true for a bounded domain Ω⊂Rn(n>2) and weak solutions in W1,n/2(Ω).


Sign in / Sign up

Export Citation Format

Share Document