scholarly journals A Cosmological Model Describing the Early Inflation, the Intermediate Decelerating Expansion, and the Late Accelerating Expansion of the Universe by a Quadratic Equation of State

Universe ◽  
2015 ◽  
Vol 1 (3) ◽  
pp. 357-411 ◽  
Author(s):  
Pierre-Henri Chavanis
Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 205
Author(s):  
Sanjay Mandal ◽  
Avik De ◽  
Tee-How Loo ◽  
Pradyumn Kumar Sahoo

The objective of the present paper is to investigate an almost-pseudo-Ricci symmetric FRW spacetime with a constant Ricci scalar in a dynamic cosmological term Λ(t) and equation of state (EoS) ω(t) scenario. Several cosmological parameters are calculated in this setting and thoroughly studied, which shows that the model satisfies the late-time accelerating expansion of the universe. We also examine all of the energy conditions to check our model’s self-stability.


2005 ◽  
Vol 14 (05) ◽  
pp. 883-891 ◽  
Author(s):  
LIXIN XU ◽  
HONGYA LIU

We consider a five-dimensional Ricci flat Bouncing cosmology and assume that the four-dimensional universe is permeated smoothly by three minimally coupled matter components: CDM + baryons ρm, radiation ρr and dark energy ρx. Evolutions of these three components are studied and it is found that dark energy dominates before the bounce, and pulls the universe contracting. In this process, dark energy decreases while radiation and the matter increases. After the bounce, the radiation and matter dominates alternatively and then decreases with the expansion of the universe. At present, the dark energy dominates again and pushes the universe accelerating. In this model, we also obtain that the equation of state (EOS) of dark energy at present time is wx0≈-1.05 and the redshift of the transition from decelerated expansion to accelerated expansion is zT≈0.37, which are compatible with the current observations.


2020 ◽  
Vol 08 (09) ◽  
pp. 1990-1998
Author(s):  
Mohammad Moksud Alam ◽  
Mohammed Aman Ullah ◽  
S M Erfanul Kabir Chowdhury

2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Pierre-Henri Chavanis

We consider a cosmological model based on a quadratic equation of state (where is the Planck density and is the cosmological density) “unifying” vacuum energy, radiation, and dark energy. For , it reduces to leading to a phase of early accelerated expansion (early inflation) with a constant density equal to the Planck density  g/m3 (vacuum energy). For , we recover the equation of state of radiation . For , we get leading to a phase of late accelerated expansion (late inflation) with a constant density equal to the cosmological density  g/m3 (dark energy). The temperature is determined by a generalized Stefan-Boltzmann law. We show a nice “symmetry” between the early universe (vacuum energy + radiation) and the late universe (radiation + dark energy). In our model, they are described by two polytropic equations of state with index and respectively. Furthermore, the Planck density in the early universe plays a role similar to that of the cosmological density in the late universe. They represent fundamental upper and lower density bounds differing by 122 orders of magnitude. We add the contribution of baryonic matter and dark matter considered as independent species and obtain a simple cosmological model describing the whole evolution of the universe. We study the evolution of the scale factor, density, and temperature. This model gives the same results as the standard CDM model for , where is the Planck time and completes it by incorporating the phase of early inflation in a natural manner. Furthermore, this model does not present any singularity at and exists eternally in the past (although it may be incorrect to extrapolate the solution to the infinite past). Our study suggests that vacuum energy, radiation, and dark energy may be the manifestation of a unique form of “generalized radiation.” By contrast, the baryonic and dark matter components of the universe are treated as different species. This is at variance with usual models (quintessence, Chaplygin gas, ...) trying to unify dark matter and dark energy.


2005 ◽  
Vol 201 ◽  
pp. 255-259
Author(s):  
Peter M. Garnavich ◽  
Yun. Wang

A non-zero cosmological constant is only one of many possible explanations for the observed accelerating expansion of the Universe. Any smoothly distributed, “dark” energy with a significant negative pressure can drive the acceleration. One possible culprit is a dynamical scalar field, but there are many less popular models such as tangled cosmic strings or domain walls. Soon theorists are likely to think up a number of new energies that can accelerate the expansion, meaning that only better observations can solve this question. Dark energy can be parameterized by its equation of state, w = p/ρ, which in the most general form can vary over time. Unlike the CMB, supernova observations cover a range of redshift so they can, in principle, probe the variation in the equation of state of the unknown component. The current SN observations loosely constrain the equation of state to w < −0.6, ruling out non-intercommuting strings and textures (w = −1/3), but consistent with a cosmological constant (w = −1). The constraints achievable from future large SN surveys are limited by our ability to understand systematic effects in SN Ia luminosities. But a large sample of supernovae reaching out to z ˜ 2 should at least discriminate between a cosmological constant and a dynamical scalar field as the source of the observed acceleration.


2018 ◽  
Vol 15 (11) ◽  
pp. 1850194 ◽  
Author(s):  
Mahbubur Rahman Mollah ◽  
Kangujam Priyokumar Singh ◽  
Pheiroijam Suranjoy Singh

The paper deals with the investigation of a homogeneous and anisotropic space-time described by Bianchi type-III metric with perfect fluid in Lyra geometry setting. Exact solutions of Einstein’s field equations have been obtained under the assumption of quadratic equation of state (EoS) of the form [Formula: see text], where [Formula: see text] is a constant and strictly [Formula: see text]. The physical and geometrical aspects are also examined in detail.


2020 ◽  
Vol 98 (11) ◽  
pp. 1015-1022 ◽  
Author(s):  
Parbati Sahoo ◽  
Barkha Taori ◽  
K.L. Mahanta

We construct a locally rotationally symmetric (LRS) Bianchi type-I cosmological model in f(R, T) theory of gravity when the source of gravitation is a mixture of barotropic fluid and dark energy (DE) by employing a time-varying deceleration parameter. We observe through the behavior of the state finder parameters (r, s) that our model begins from the Einstein static era and goes to ΛCDM era. The equation of state (EOS) parameter (ωd) for DE varies from the phantom (ω < –1) phase to quintessence (ω > –1) phase, which is consistent with observational results. It is found that the discussed model can reproduce the current accelerating phase of the expansion of the universe.


Physics Today ◽  
2005 ◽  
Vol 58 (4) ◽  
pp. 39-39
Author(s):  
John Updike

Sign in / Sign up

Export Citation Format

Share Document