scholarly journals Black Holes and Wormholes in Extended Gravity

Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 25 ◽  
Author(s):  
Stanislav Alexeyev ◽  
Maxim Sendyuk

We discuss black hole type solutions and wormhole type ones in the effective gravity models. Such models appear during the attempts to construct the quantum theory of gravity. The mentioned solutions, being, mostly, the perturbative generalisations of well-known ones in general relativity, carry out additional set of parameters and, therefore could help, for example, in the studying of the last stages of Hawking evaporation, in extracting the possibilities for the experimental or observational search and in helping to constrain by astrophysical data.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2021 ◽  
Author(s):  
Thomas Berry

<p><b>The central theme of this thesis is the study and analysis of black hole mimickers. The concept of a black hole mimicker is introduced, and various mimicker spacetime models are examined within the framework of classical general relativity. The mimickers examined fall into the classes of regular black holes and traversable wormholes under spherical symmetry. The regular black holes examined can be further categorised as static spacetimes, however the traversable wormhole is allowed to have a dynamic (non-static) throat. Astrophysical observables are calculated for a recently proposed regular black hole model containing an exponential suppression of the Misner-Sharp quasi-local mass. This same regular black hole model is then used to construct a wormhole via the "cut-and-paste" technique. The resulting wormhole is then analysed within the Darmois-Israel thin-shell formalism, and a linearised stability analysis of the (dynamic) wormhole throat is undertaken. Yet another regular black hole model spacetime is proposed, extending a previous work which attempted to construct a regular black hole through a quantum "deformation" of the Schwarzschild spacetime. The resulting spacetime is again analysed within the framework of classical general relativity. </b></p><p>In addition to the study of black hole mimickers, I start with a brief overview of the theory of special relativity where a new and novel result is presented for the combination of relativistic velocities in general directions using quaternions. This is succeed by an introduction to concepts in differential geometry needed for the successive introduction to the theory of general relativity. A thorough discussion of the concept of spacetime singularities is then provided, before analysing the specific black hole mimickers discussed above.</p>


2020 ◽  
Vol 29 (11) ◽  
pp. 10-16
Author(s):  
Wontae KIM ◽  
Mu-In PARK

A black hole is a theoretical prediction of Einstein’s general theory of relativity, differently from Newtonian gravity, which is a non-relativistic gravity. In recent few years, its direct detection via gravitational waves and other multi-messenger observations have made it possible to test the prediction and hence its associated general relativity. From purely theoretical points of view, general relativity cannot be a complete description due to its not being compatible with quantum mechanics, which is a successful description of microscopic objects. In this article, we introduce the conceptional development of quantum-gravity theories and give brief sketches of fundamental problems in quantum black holes. As an interesting model of quantum black holes, we consider a collapsing shell of matter to form a Hayward black hole and investigate semiclassically quantum radiation from the shell. By using the Israel’s formulation and the functional Schrödinger formulation for massless quantum radiation, we find that the Hawking temperature can be deduced from the occupation number of excited states when the shell approaches its own horizon.


Universe ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 39 ◽  
Author(s):  
Denis Arruga ◽  
Jibril Ben Achour ◽  
Karim Noui

Effective models of black holes interior have led to several proposals for regular black holes. In the so-called polymer models, based on effective deformations of the phase space of spherically symmetric general relativity in vacuum, one considers a deformed Hamiltonian constraint while keeping a non-deformed vectorial constraint, leading under some conditions to a notion of deformed covariance. In this article, we revisit and study further the question of covariance in these deformed gravity models. In particular, we propose a Lagrangian formulation for these deformed gravity models where polymer-like deformations are introduced at the level of the full theory prior to the symmetry reduction and prior to the Legendre transformation. This enables us to test whether the concept of deformed covariance found in spherically symmetric vacuum gravity can be extended to the full theory, and we show that, in the large class of models we are considering, the deformed covariance cannot be realized beyond spherical symmetry in the sense that the only deformed theory which leads to a closed constraints algebra is general relativity. Hence, we focus on the spherically symmetric sector, where there exist non-trivial deformed but closed constraints algebras. We investigate the possibility to deform the vectorial constraint as well and we prove that non-trivial deformations of the vectorial constraint with the condition that the constraints algebra remains closed do not exist. Then, we compute the most general deformed Hamiltonian constraint which admits a closed constraints algebra and thus leads to a well-defined effective theory associated with a notion of deformed covariance. Finally, we study static solutions of these effective theories and, remarkably, we solve explicitly and in full generality the corresponding modified Einstein equations, even for the effective theories which do not satisfy the closeness condition. In particular, we give the expressions of the components of the effective metric (for spherically symmetric black holes interior) in terms of the functions that govern the deformations of the theory.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2319-2324 ◽  
Author(s):  
JAMES GRABER

LISA may make it possible to test the black-hole uniqueness theorems of general relativity, also called the no-hair theorems, by Ryan's method of detecting the quadrupole moment of a black hole using high-mass-ratio inspirals. This test can be performed more robustly by observing inspirals in earlier stages, where the simplifications used in making inspiral predictions by the perturbative and post-Newtonian methods are more nearly correct. Current concepts for future missions such as DECIGO and BBO would allow even more stringent tests by this same method. Recently discovered evidence supports the existence of intermediate-mass black holes (IMBHs). Inspirals of binary systems with one IMBH and one stellar-mass black hole would fall into the frequency band of proposed maximum sensitivity for DECIGO and BBO. This would enable us to perform the Ryan test more precisely and more robustly. We explain why tests based on observations earlier in the inspiral are more robust and provide preliminary estimates of possible optimal future observations.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850069 ◽  
Author(s):  
Iarley P. Lobo ◽  
H. Moradpour ◽  
J. P. Morais Graça ◽  
I. G. Salako

A promising theory in modifying general relativity (GR) by violating the ordinary energy–momentum conservation law in curved spacetime is the Rastall theory of gravity. In this theory, geometry and matter fields are coupled to each other in a nonminimal way. Here, we study thermodynamic properties of some black hole (BH) solutions in this framework, and compare our results with those of GR. We demonstrate how the presence of these matter sources amplifies the effects caused by the Rastall parameter in thermodynamic quantities. Our investigation also shows that BHs with radius smaller than a certain amount ([Formula: see text]) have negative heat capacity in the Rastall framework. In fact, it is a lower bound for the possible values of horizon radius satisfied by the stable BHs.


Author(s):  
Katherine Blundell

‘Characterizing black holes’ describes the two different types of black holes: Schwarzschild black holes that do not rotate and Kerr black holes that do. The only distinguishing characteristics of black holes are their mass and their spin. A remarkable feature of a spinning black hole is that the gravitational field pulls objects around the black hole’s axis of rotation, not merely in towards its centre—an effect called frame dragging. The static limit and ergosphere regions of black holes are also described. Einstein’s equations of General Relativity allow many different solutions describing alternative versions of curved spacetime. Could white holes and worm holes exist in our universe?


2019 ◽  
Vol 34 (35) ◽  
pp. 1930017 ◽  
Author(s):  
Antonio Gallerati

We perform a detailed analysis of black hole solutions in supergravity models. After a general introduction on black holes in general relativity and supersymmetric theories, we provide a detailed description of ungauged extended supergravities and their dualities. Therefore, we analyze the general form of black hole configurations for these models, their near-horizon behavior and characteristic of the solution. An explicit construction of a black hole solution with its physical implications is given for the STU-model. The second part of this review is dedicated to gauged supergravity theories. We describe a step-by-step gauging procedure involving the embedding tensor formalism to be used to obtain a gauged model starting from an ungauged one. Finally, we analyze general black hole solutions in gauged models, providing an explicit example for the [Formula: see text], [Formula: see text] case. A brief review on special geometry is also provided, with explicit results and relations for supersymmetric black hole solutions.


2008 ◽  
Vol 2008 (07) ◽  
pp. 014 ◽  
Author(s):  
P Draggiotis ◽  
M Masip ◽  
I Mastromatteo

1993 ◽  
Vol 08 (20) ◽  
pp. 1925-1941
Author(s):  
ULF H. DANIELSSON

In this work the quantum theory of two-dimensional dilaton black holes is studied using the Wheeler-De Witt equation. The solutions correspond to wave functions of the black hole. It is found that for an observer inside the horizon, there are uncertainty relations for the black hole mass and a parameter in the metric determining the Hawking flux. Only for a particular value of this parameter can both be known with arbitrary accuracy. In the generic case there is instead a relation that is very similar to the so-called string uncertainty relation.


Sign in / Sign up

Export Citation Format

Share Document