scholarly journals Sterile Neutrinos with Neutrino Telescopes

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 426
Author(s):  
Carlos A. Argüelles ◽  
Jordi Salvado

Searches for light sterile neutrinos are motivated by the unexpected observation of an electron neutrino appearance in short-baseline experiments, such as the Liquid Scintillator Neutrino Detector (LSND) and the Mini Booster Neutrino Experiment (MiniBooNE). In light of these unexpected results, a campaign using natural and anthropogenic sources to find the light (mass-squared-difference around 1 eV2) sterile neutrinos is underway. Among the natural sources, atmospheric neutrinos provide a unique gateway to search for sterile neutrinos due to the broad range of baseline-to-energy ratios, L/E, and the presence of significant matter effects. Since the atmospheric neutrino flux rapidly falls with energy, studying its highest energy component requires gigaton-scale neutrino detectors. These detectors—often known as neutrino telescopes since they are designed to observe tiny astrophysical neutrino fluxes—have been used to perform searches for light sterile neutrinos, and researchers have found no significant signal to date. This brief review summarizes the current status of searches for light sterile neutrinos with neutrino telescopes deployed in solid and liquid water.

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Baobiao Yue ◽  
Jiajun Liao ◽  
Jiajie Ling

Abstract Neutrino magnetic moment (νMM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the XENON1T collaboration might indicate a ∼ 2.2 × 10−11μB effective neutrino magnetic moment ($$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff ) from solar neutrinos. Therefore, it is essential to carry out the νMM searches at a different experiment to confirm or exclude such a hypothesis. We study the feasibility of doing νMM measurement with 4 kton fiducial mass at Jinping neutrino experiment (Jinping) using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff can reach < 1.2 × 10−11μB at 90% C.L. with 10-year data taking of solar neutrinos. Besides the abundance of the intrinsic low energy background 14C and 85Kr in the liquid scintillator, we find the sensitivity to νMM is highly correlated with the systematic uncertainties of pp and 85Kr. Reducing systematic uncertainties (pp and 85Kr) and the intrinsic background (14C and 85Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source 51Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($$ {\mu}_{\nu_e} $$ μ ν e ) with < 1.1 × 10−11μB at 90% C.L. . With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.


2019 ◽  
Vol 207 ◽  
pp. 04005 ◽  
Author(s):  
B. J. P. Jones

Anomalies in short baseline experiments have been interpreted as evidence for additional neutrino mass states with large mass splittings from the known, active flavors. This explanation mandates a corresponding signature in the muon neutrino disappearance channel, which has yet to be observed. Searches for muon neutrino disappearance at the IceCube neutrino telescope presently provide the strongest limits in the space of mixing angles for eVscale sterile neutrinos. This proceeding for the Very Large Volume Neutrino Telescopes (VLVnT) Workshop summarizes the IceCube analyses that have searched for sterile neutrinos and describes ongoing work toward enhanced, high-statistics sterile neutrino searches.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650123 ◽  
Author(s):  
Paraskevi Divari ◽  
John Vergados

In this paper, we study the effect of conversion of super-light sterile neutrino (SLSN) to electron neutrino in matter like that of the Earth. In the Sun the resonance conversion between SLSN and electron neutrino via the neutral current is suppressed due to the smallness of neutron number. On the other hand, neutron number density can play an important role in the Earth, making the scenario of SLSN quite interesting. The effect of CP-violating phases on active-SLSN oscillations is also discussed. Reactor neutrino experiments with medium or short baseline may probe the scenario of SLSN.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
S. Andringa ◽  
E. Arushanova ◽  
S. Asahi ◽  
M. Askins ◽  
D. J. Auty ◽  
...  

SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0νββ) of130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The0νββPhase I is foreseen for 2017.


2019 ◽  
Vol 34 (10) ◽  
pp. 1930005 ◽  
Author(s):  
Sin Kyu Kang

The impacts of the light sterile neutrino hypothesis in particle physics and cosmology are reviewed. The observed short baseline neutrino anomalies challenging the standard explanation of neutrino oscillations within the framework of three active neutrinos are addressed. It is shown that they can be interpreted as the experimental hints pointing towards the existence of sterile neutrino at the eV scale. While the electron neutrino appearance and disappearance data are in favor of such a sterile neutrino, the muon disappearance data disfavor it, which gives rise to a strong appearance–disappearance tension. After a brief review on the cosmological effects of light sterile neutrinos, proposed signatures of light sterile neutrinos in the existing cosmological data are discussed. The keV-scale sterile neutrinos as possible dark matter candidates are also discussed by reviewing different mechanisms of how they can be produced in the early Universe and how their properties can be constrained by several cosmological observations. We give an overview of the possibility that keV-scale sterile neutrino can be a good DM candidate and play a key role in achieving low-scale leptogenesis simultaneously by introducing a model where an extra light sterile neutrino is added on top of type I seesaw model.


2019 ◽  
Vol 69 (1) ◽  
pp. 363-387 ◽  
Author(s):  
Pedro A.N. Machado ◽  
Ornella Palamara ◽  
David W. Schmitz

The Short-Baseline Neutrino (SBN) program consists of three liquid argon time-projection chamber detectors located along the Booster Neutrino Beam at Fermi National Accelerator Laboratory. Its main goals include searches for New Physics—particularly eV-scale sterile neutrinos, detailed studies of neutrino–nucleus interactions at the GeV energy scale, and the advancement of the liquid argon detector technology that will also be used in the DUNE/LBNF long-baseline neutrino experiment in the next decade. We review these science goals and the current experimental status of SBN.


2019 ◽  
Vol 209 ◽  
pp. 01011
Author(s):  
Giulio Settanta ◽  
Stefano Maria Mari ◽  
Cristina Martellini ◽  
Paolo Montini

Cosmic Ray and neutrino oscillation physics can be studied by using atmospheric neutrinos. JUNO (Jiangmen Underground Neutrino Observatory) is a large liquid scintillator detector with low energy detection threshold and excellent energy resolution. The detector performances allow the atmospheric neutrino oscillation measurements. In this work, a discrimination algorithm for different reaction channels of neutrino-nucleon interactions in the JUNO liquid scintillator, in the GeV/sub-GeV energy region, is presented. The atmospheric neutrino flux is taken as reference, considering $\mathop {{v_\mu }}\limits^{( - )} $ and $\mathop {{v_e}}\limits^{( - )} $. The different temporal behaviour of the classes of events have been exploited to build a timeprofile-based discrimination algorithm. The results show a good selection power for $\mathop {{v_e}}\limits^{( - )} $ CC events, while the $\mathop {{v_\mu }}\limits^{( - )} $ CC component suffers of an important contamination from NC events at low energy, which is under study. Preliminary results are presented.


Sign in / Sign up

Export Citation Format

Share Document