scholarly journals NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 394
Author(s):  
Calum Forrest ◽  
Ariane Gomes ◽  
Matthew Reeves ◽  
Victoria Male

Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.

2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Liat Dassa ◽  
Einat Seidel ◽  
Esther Oiknine-Djian ◽  
Rachel Yamin ◽  
Dana G. Wolf ◽  
...  

ABSTRACT Natural killer (NK) cells are lymphocytes of the innate immune system capable of killing hazardous cells, including virally infected cells. NK cell-mediated killing is triggered by activating receptors. Prominent among these is the activating receptor NKG2D, which binds several stress-induced ligands, among them major histocompatibility complex (MHC) class I-related chain A (MICA). Most of the human population is persistently infected with human cytomegalovirus (HCMV), a virus which employs multiple immune evasion mechanisms, many of which target NK cell responses. HCMV infection is mostly asymptomatic, but in congenitally infected neonates and in immunosuppressed patients it can lead to serious complications and mortality. Here we discovered that an HCMV protein named UL148A whose role was hitherto unknown is required for evasion of NK cells. We demonstrate that UL148A-deficient HCMV strains are impaired in their ability to downregulate MICA expression. We further show that when expressed by itself, UL148A is not sufficient for MICA targeting, but rather acts in concert with an unknown viral factor. Using inhibitors of different cellular degradation pathways, we show that UL148A targets MICA for lysosomal degradation. Finally, we show that UL148A-mediated MICA downregulation hampers NK cell-mediated killing of HCMV-infected cells. Discovering the full repertoire of HCMV immune evasion mechanisms will lead to a better understanding of the ability of HCMV to persist in the host and may also promote the development of new vaccines and drugs against HCMV. IMPORTANCE Human cytomegalovirus (HCMV) is a ubiquitous pathogen which is usually asymptomatic but that can cause serious complications and mortality in congenital infections and in immunosuppressed patients. One of the difficulties in developing novel vaccines and treatments for HCMV is its remarkable ability to evade our immune system. In particular, HCMV directs significant efforts to thwarting cells of the innate immune system known as natural killer (NK) cells. These cells are crucial for successful control of HCMV infection, and yet our understanding of the mechanisms which HCMV utilizes to elude NK cells is partial at best. In the present study, we discovered that a protein encoded by HCMV which had no known function is important for preventing NK cells from killing HCMV-infected cells. This knowledge can be used in the future for designing more-efficient HCMV vaccines and for formulating novel therapies targeting this virus.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1640-1640 ◽  
Author(s):  
Maria Bouzani ◽  
Michael Ok ◽  
Oliver Kurzai ◽  
Hermann Einsele ◽  
Juergen Loeffler

Abstract Abstract 1640 Poster Board I-666 Introduction Natural killer (NK) cells are CD3- CD56+ lymphocytes demonstrating confirmed cytotoxicity against neoplastic and virus infected host cells. Increasing data provide evidence of a direct NK cell effect against extracellular pathogens, such as bacteria, parasites and yeasts, but there is a relative lack of data on their interaction with filamentous fungus and especially with Aspergillus fumigatus. Aspergillus is an omnipresent mold, living in close vicinity with humans, being constantly inhaled in the lungs and thereafter cleared by the innate immune system. Otherwise harmless for healthy people, it is at the origin of invasive Aspergillosis (IA), an extremely devastating disease for immunocompromised subjects. Host's innate immune system controls Aspergillus growth through a complex system of potent effector cells, mediating their antifungal activity mainly by phagocytosis. Our study aims to shed light for the first time on the direct interaction between human NK cells, mediators of extracellular cytotoxicity, and Aspergillus. Methods NK cells were isolated after magnetic depletion of the peripheral blood of healthy volunteers and they were used after 24h priming with 500 U/ml recombinant interleukin – 2 rhIL-2. To determine gene expression and cytokine release of interferon gamma (IFNg) and Tumor Necrosis Factor- a (TNF-a), NK cells were stimulated for 0, 3, 6 and 12h with different morphologies of Aspergillus: conidia and germlings. To evaluate the lethal impact of NK cells on Aspergillus, plate killing assays were performed at 0, 3 and 6h time points. To illustrate the role of antibody dependent cellular cytotoxicity, ADCC a monoclonal IgG antibody, against germlings, was tested. Transwell permeable membranes, with pores of 0,4 μm, prohibiting the direct contact of cells placed on their opposite sides, but allowing the free circulation of molecules, were used to estimate the effect of cell-fungal contact. To investigate the cytotoxic mechanism involved, NK cells were depleted from perforin and granzymes by treatment with strontium chloride and they had their death ligands, TNF- related apoptosis- inducing ligand (TRAIL) and FasL, neutralised by means of blocking antibodies. The release of cytotoxic granules was estimated by the NK cell surface expression of the marker of degranulation CD107a/b. Results Observing the in vitro interaction of NK cells with Aspergillus, fungal germinated morphologies (germlings) showed to be highly immunogenic towards NK cells, compared to conidia, inducing the gene expression and cytokine release of Th1 immune mediators such as IFN-g (p <0,05) and TNF-a.(p <0,1). NK cells demonstrated also a strong lethal impact against germlings (p <0,05). Moreover, the presence of antifungal antibody further potentiated both immunoregulatory and cytotoxic activities. Investigating the means engaged by NK cells to perceive and kill Aspergillus, direct effector–pathogen cell to cell contact was revealed as prerequisite; when this condition was not present there was neither cytokine induction, nor fungal damage (p <0,05). This finding was confirmed by the lack of surface expression of CD107a/b, after NK cell- Aspergillus co-incubation. Investigating the killing pathway we compared the effectiveness of perforin – granzymes depleted NK cells to this of intact cells against germlings and it was found equivalent (p =NS). In a similar way, neutralisation of TRAIL and FasL ligands did not alter the cytotoxic ability of NK cells towards Aspergillus. Conclusion Our data show that human NK cells are stimulated in vitro by Aspergillus germlings, which triggers an immunoregulatory Th1 orientated response and causes important fungal killing. NK cells are not aware of conidia, they are not stimulated by them and par consequence they do not kill them. Finally, we showed that NK cells do not mediate their cytotoxic effect via perforin – granzymes pathway, neither through the engagement of TRAIL, FasL death receptors, suggesting that another pathway is involved in NK cell – Aspergillus fumigatus interplay. We suggest that further investigation of these striking findings might offer a potent immunotherapeutic tool against IA. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 83 (11) ◽  
pp. 2709-2716 ◽  
Author(s):  
Dominique Markine-Goriaynoff ◽  
Xavier Hulhoven ◽  
César L. Cambiaso ◽  
Philippe Monteyne ◽  
Thérèse Briet ◽  
...  

Early after infection, lactate dehydrogenase-elevating virus (LDV) alters the immune system by polyclonally activating B lymphocytes, which leads to IgG2a-restricted hypergammaglobulinaemia, and by suppressing the secretion of Th2 cytokines. Considering that these alterations may involve cells of the innate immune system and cytokines such as interferon-gamma (IFN-γ), we analysed the effect of LDV on natural killer (NK) cells. Within a few days of infection, a strong and transient NK cell activation, characterized by enhanced IFN-γ message expression and cytolysis, was observed. LDV triggered a large increase in serum IFN-γ levels. Because NK cells and IFN-γ may participate in the defence against virus infection, we analysed their possible role in the control of LDV titres with a new agglutination assay. Our results indicate that neither the activation of NK cells nor the IFN-γ secretion affect the early and rapid virus replication that follows LDV inoculation.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2226
Author(s):  
Israa Shihab ◽  
Bariaa A. Khalil ◽  
Noha Mousaad Elemam ◽  
Ibrahim Y. Hachim ◽  
Mahmood Yaseen Hachim ◽  
...  

The innate immune system is the first line of defense against invading pathogens and has a major role in clearing transformed cells, besides its essential role in activating the adaptive immune system. Macrophages, dendritic cells, NK cells, and granulocytes are part of the innate immune system that accumulate in the tumor microenvironment such as breast cancer. These cells induce inflammation in situ by secreting cytokines and chemokines that promote tumor growth and progression, in addition to orchestrating the activities of other immune cells. In breast cancer microenvironment, innate immune cells are skewed towards immunosuppression that may lead to tumor evasion. However, the mechanisms by which immune cells could interact with breast cancer cells are complex and not fully understood. Therefore, the importance of the mammary tumor microenvironment in the development, growth, and progression of cancer is widely recognized. With the advances of using bioinformatics and analyzing data from gene banks, several genes involved in NK cells of breast cancer individuals have been identified. In this review, we discuss the activities of certain genes involved in the cross-talk among NK cells and breast cancer. Consequently, altering tumor immune microenvironment can make breast tumors more responsive to immunotherapy.


2006 ◽  
Vol 80 (9) ◽  
pp. 4286-4291 ◽  
Author(s):  
Eva Szomolanyi-Tsuda ◽  
Xueya Liang ◽  
Raymond M. Welsh ◽  
Evelyn A. Kurt-Jones ◽  
Robert W. Finberg

ABSTRACT Natural killer (NK) cells are essential for the early control of murine cytomegalovirus (MCMV) infection. Here, we demonstrate that toll-like receptor 2 (TLR2) plays a role in the NK cell-mediated control of MCMV. TLR2 knockout (KO) mice had elevated levels of MCMV in the spleen and liver on day 4 postinfection compared to C57BL/6 mice. In vivo depletion of NK cells with anti-NK1.1 antibodies, however, eliminated the differences in viral titers between the two groups, suggesting that the effect of TLR2 on MCMV clearance on day 4 was NK cell mediated. The defect in early antiviral control was associated with a decreased NK cell population in the spleen and liver and reduced amounts of interleukin-18 and α/β interferon secreted in the TLR2 KO mice. Our studies suggest that in addition to the reported involvement of TLR9 and TLR3, TLR2 is also involved in innate immune responses to MCMV infection.


2001 ◽  
Vol 69 (9) ◽  
pp. 5270-5277 ◽  
Author(s):  
Monamaris M. Borges ◽  
Antonio Campos-Neto ◽  
Paul Sleath ◽  
Keneth H. Grabstein ◽  
Philip J. Morrissey ◽  
...  

ABSTRACT The interaction of the innate immune system with the microbial world involves primarily two sets of molecules generally known as microbial pattern recognition receptors and microbial pattern recognition molecules, respectively. Examples of the former are the Toll receptors present particularly in macrophages and dendritic cells. Conversely, the microbial pattern recognition molecules are conserved protist homopolymers, such as bacterial lipopolysaccharides, lipoteichoic acids, peptidoglycans, glucans, mannans, unmethylated bacterial DNA, and double-strand viral RNA. However, for protists that lack most of these molecules, such as protozoans, the innate immune system must have evolved receptors that recognize other groups of microbial molecules. Here we present evidence that a highly purified protein encoded by a Leishmania brasiliensis gene may be one such molecule. This recombinant leishmanial molecule, a homologue of eukaryotic ribosomal elongation and initiation factor 4a (LeIF), strongly stimulates spleen cells from severe combined immunodeficient (SCID) mice to produce interleukin-12 (IL-12), IL-18, and high levels of gamma interferon. In addition, LeIF potentiates the cytotoxic activity of the NK cells of these animals. Because LeIF is a conserved molecule and because SCID mice lack T and B lymphocytes but have a normal innate immune system (normal reticuloendothelial system and NK cells), these results suggest that proteins may also be included as microbial pattern recognition molecules. The nature of the receptor involved in this innate recognition is unknown. However, it is possible to exclude the Toll receptor Tlr4 as a putative LeIF receptor because the gene encoding this receptor is defective in C3H/HeJ mice, the mouse strain used in the present studies.


2017 ◽  
Vol 91 (20) ◽  
Author(s):  
Silke Paust ◽  
Catherine A. Blish ◽  
R. Keith Reeves

ABSTRACT Classically, natural killer (NK) cells have been defined by nonspecific innate killing of virus-infected and tumor cells. However, burgeoning evidence suggests that the functional repertoire of NK cells is far more diverse than has been previously appreciated, thus raising the possibility that there may be unexpected functional specialization and even adaptive capabilities among NK cell subpopulations. Some of the first evidence that NK cells respond in an antigen-specific fashion came from experiments revealing that subpopulations of murine NK cells were able to respond to a specific murine cytomegalovirus (MCMV) protein and that in the absence of T and B cells, murine NK cells also mediated adaptive immune responses to a secondary challenge with specific haptens. These data have been followed by demonstrations of NK cell memory of viruses and viral antigens in mice and primates. Herein, we discuss different forms of NK cell antigen specificity and how these responses may be tuned to specific viral pathogens, and we provide assessment of the current literature that may explain molecular mechanisms of the novel phenomenon of NK cell memory.


2015 ◽  
Vol 7 (6) ◽  
pp. 557-562 ◽  
Author(s):  
Timothy E. O'Sullivan ◽  
Joseph C. Sun

Immunological memory is classically regarded as an attribute of antigen-specific T and B lymphocytes of the adaptive immune system. Cells of the innate immune system, including natural killer (NK) cells, have been considered short-lived cytolytic cells that can rapidly respond against pathogens in an antigen-independent manner and then die off. However, NK cells have recently been described to possess traits of adaptive immunity, such as clonal expansion after viral antigen exposure to generate long-lived memory cells. In this review, we will discuss the current evidence for viral-induced NK cell memory in both mice and humans.


2021 ◽  
pp. 1-9
Author(s):  
Johannes D. Lang ◽  
David G. Olmes ◽  
Manuel Proske ◽  
Mareike Hagge ◽  
Müjgan Dogan Onugoren ◽  
...  

<b><i>Introduction:</i></b> Recent studies have shown that inflammatory processes might play a role in epileptogenesis. Their role in ictogenesis is much less clear. The aim of this study was to investigate peri-ictal changes of the innate immune system by analyzing changes of immune cells, as well as pro- and anti-inflammatory cytokines. <b><i>Methods:</i></b> Patients with active epilepsy admitted for video-EEG monitoring for presurgical evaluation were included. Blood was sampled every 20 min for 5 h on 3 consecutive days until a seizure occurred. After a seizure, additional samples were drawn immediately, as well as 1 and 24 h later. To analyze the different populations of peripheral blood mononuclear cells, all samples underwent FACS for CD3, CD4, CD8, CD56, CD14, CD16, and CD19. For cytokine analysis, we used a custom bead-based multiplex immunoassay for IFN-γ, IL-1β, IL-1RA, IL-4, IL-6, IL-10, IL-12, IL-17, MCP-1, MIP-1α, and TNFα. <b><i>Results:</i></b> Fourteen patients with focal seizures during the sampling period were included. Natural killer (NK) cells showed a negative correlation (<i>ρ</i> = −0.3362, <i>p</i> = 0.0195) before seizure onset and an immediate increase to 1.95-fold afterward. T helper (<i>T</i><sub>H</sub>) and B cells decreased by 2 and 8%, respectively, in the immediate postictal interval. Nonclassical and intermediate monocytes decreased not until 1 day after the seizures, and cytotoxic T (<i>T</i><sub>C</sub>) cells showed a long-lasting postictal increase by 4%. IL-10 and MCP-1 increased significantly after seizures, and IL-12 decreased in the postictal phase. <b><i>Discussion/Conclusion:</i></b> Our study argues for a role of the innate immune system in the pre- and postictal phases. NK cells might be involved in preictal changes or be altered as an epiphenomenon in the immediate preictal interval.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Sara Gabrielli ◽  
Claudio Ortolani ◽  
Genny del Zotto ◽  
Francesca Luchetti ◽  
Barbara Canonico ◽  
...  

Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.


Sign in / Sign up

Export Citation Format

Share Document