scholarly journals Field Evaluation of Commercial Vaccines against Infectious Bovine Rhinotracheitis (Ibr) Virus Using Different Immunization Protocols

Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 408
Author(s):  
Laureana De Brun ◽  
Mauro Leites ◽  
Agustín Furtado ◽  
Fabricio Campos ◽  
Paulo Roehe ◽  
...  

Bovine alphaherpesvirus 1 is ubiquitous in cattle populations and is associated with several clinical syndromes, including respiratory disease, genital disease, infertility and abortions. Control of the virus in many parts of the world is achieved primarily through vaccination with either inactivated or live modified viral vaccines. The objective of this study was to evaluate the performance of four commercially available BoHV-1 vaccines commonly used in Central and South America. Animals were divided into eight groups and vaccinated on days 0 and 30. Groups 1 to 4 received two doses of four different BoHV-1 commercial vaccines (named A to D). Groups 5 and 6 received vaccine D plus a vaccine for either Clostridial or Food-and-Mouth-Disease (FMD), respectively. Group 7 received one dose of two different brands of reproductive vaccines. Serum samples were collected from all animals on days 0, 30 and 60 to evaluate neutralizing and isotype-specific (IgG1 and IgG2) antibodies. Of the four commercial vaccines evaluated, only vaccine A induced neutralizing antibodies to titers ≥ 1:8 in 13/15 (86%) of the animals 60 days post-vaccination. Levels of IgG2 antibody increased in all groups, except for group 2 after the first dose of vaccine B. These results show that only vaccine A induced significant and detectable levels of BoHV-1-neutralizing antibodies. The combination of vaccine D with Clostridial or FMD vaccines did not affect neutralizing antibody responses to BoHV-1. The antibody responses of three of the four commercial vaccines analyzed here were lower than admissible by vaccine A. These results may be from vaccination failure, but means to identify the immune signatures predictive of clinical protection against BoHV-1 in cattle should also be considered.

2011 ◽  
Vol 41 (2) ◽  
pp. 307-313
Author(s):  
Maria do Carmo Cilento ◽  
Edviges Maristela Pituco ◽  
Ricardo Spacagna Jordão ◽  
Cláudia Pestana Ribeiro ◽  
Moacir Marchiori Filho ◽  
...  

An experimental inactivated vaccine against bovine herpesvirus-1 (BoHV-1) was produced aiming to evaluate the systemic and local antibody responses in 12 seronegative heifers, after vaccination and revaccination. Serum samples were submitted to virus neutralization assay and to ELISA test for detection of IgG1 and IgG2 isotypes. Nasal secretion samples were submitted to the same ELISA test for detection of IgG1 and IgG2 isotypes. The results showed that moderate to high neutralizing titres and IgG1 and IgG2 antibody responses were induced after the second vaccination in the serum and in nasal secretions up to 114 days post vaccination. IgG2 antibodies were the prevalent isotype for most of the post-vaccination period. The results indicate that BoHV-1 experimental inactivated vaccine elicited potentially protective IgG1 and IgG2 antibody levels, both in the systemic and mucosal compartments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas W. McDade ◽  
Alexis R. Demonbreun ◽  
Amelia Sancilio ◽  
Brian Mustanski ◽  
Richard T. D’Aquila ◽  
...  

AbstractTwo-dose messenger RNA vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective in preventing symptomatic COVID-19 infection. However, the durability of protection is not known, nor is the effectiveness against emerging viral variants. Additionally, vaccine responses may differ based on prior SARS-CoV-2 exposure history. To investigate protection against SARS-CoV-2 variants we measured binding and neutralizing antibody responses following both vaccine doses. We document significant declines in antibody levels three months post-vaccination, and reduced neutralization of emerging variants, highlighting the need to identify correlates of clinical protection to inform the timing of and indications for booster vaccination.


2021 ◽  
Author(s):  
Eric D. Laing ◽  
Nusrat J. Epsi ◽  
Stephanie A. Richard ◽  
Emily C. Samuels ◽  
Wei Wang ◽  
...  

ABSTRACTImportanceThe persistence of SARS-CoV-2 antibodies may be a predictive correlate of protection for both natural infections and vaccinations. Identifying predictors of robust antibody responses is important to evaluate the risk of re-infection / vaccine failure and may be translatable to vaccine effectiveness.ObjectiveTo 1) determine the durability of anti-SARS-CoV-2 IgG and neutralizing antibodies in subjects who experienced mild and moderate to severe COVID-19, and 2) to evaluate the correlation of age and IgG responses to both endemic human seasonal coronaviruses (HCoVs) and SARS-CoV-2 according to infection outcome.DesignLongitudinal serum samples were collected from PCR-confirmed SARS-CoV-2 positive participants (U.S. active duty service members, dependents and military retirees, including a range of ages and demographics) who sought medical treatment at seven U.S. military hospitals from March 2020 to March 2021 and enrolled in a prospective observational cohort study.ResultsWe observed SARS-CoV-2 seropositivity in 100% of inpatients followed for six months (58/58) to one year (8/8), while we observed seroreversion in 5% (9/192) of outpatients six to ten months after symptom onset, and 18% (2/11) of outpatients followed for one year. Both outpatient and inpatient anti-SARS-CoV-2 binding-IgG responses had a half-life (T1/2) of >1000 days post-symptom onset. The magnitude of neutralizing antibodies (geometric mean titer, inpatients: 378 [246-580, 95% CI] versus outpatients: 83 [59-116, 95% CI]) and durability (inpatients: 65 [43-98, 95% CI] versus outpatients: 33 [26-40, 95% CI]) were associated with COVID-19 severity. Older age was a positive correlate with both higher IgG binding and neutralizing antibody levels when controlling for COVID-19 hospitalization status. We found no significant relationships between HCoV antibody responses and COVID-19 clinical outcomes, or the development of SARS-CoV-2 neutralizing antibodies.Conclusions and RelevanceThis study demonstrates that humoral responses to SARS-CoV-2 infection are robust on longer time-scales, including those arising from milder infections.However, the magnitude and durability of the antibody response after natural infection was lower and more variable in younger participants who did not require hospitalization for COVID-19. These findings support vaccination against SARS-CoV-2 in all suitable populations including those individuals that have recovered from natural infection.


2021 ◽  
pp. eabi8452
Author(s):  
Craig Fenwick ◽  
Priscilla Turelli ◽  
Céline Pellaton ◽  
Alex Farina ◽  
Jérémy Campos ◽  
...  

The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies in the serum of an individual indicates prior infection or vaccination. However, it provides limited insight into the protective nature of this immune response. Neutralizing antibodies recognizing the viral spike protein are more revealing, yet their measurement traditionally requires virus- and cell-based systems that are costly, time-consuming, inflexible, and potentially biohazardous. Here, we present a cell-free quantitative neutralization assay based on the competitive inhibition of trimeric SARS-CoV-2 spike protein binding to the angiotensin converting enzyme 2 (ACE2) receptor. This high-throughput method matches the performance of the gold standard live virus infection assay, as verified with a panel of 206 seropositive donors with varying degrees of infection severity and virus-specific IgG titers, achieving 96.7% sensitivity and 100% specificity. Furthermore, it allows for the parallel assessment of neutralizing activities against multiple SARS-CoV-2 spike protein variants of concern. We used our assay to profile serum samples from 59 patients hospitalized with coronavirus disease 2019 (COVID-19). We found that, although most sera had high activity against the 2019-nCoV parental spike protein and, to a lesser extent, the α (B.1.1.7) variant, only 58% of serum samples could efficiently neutralize a spike protein derivative containing mutations present in the β (B.1.351) variant. Thus, we have developed an assay that can evaluate effective neutralizing antibody responses to SARS-CoV-2 spike protein variants of concern after natural infection and that can be applied to characterize vaccine-induced antibody responses or to assess the potency of monoclonal antibodies.


2020 ◽  
Vol 50 (4) ◽  
Author(s):  
Ingryd Merchioratto ◽  
Alana de Almeida Aurélio ◽  
Janice Machado Villela ◽  
Nicole Vieira Stone ◽  
Isac Junior Roman ◽  
...  

ABSTRACT: The serological responses induced by four commercial inactivated Uruguayan vaccines against bovine alphaherpesviruses (BoHV)-1 and -5 and bovine pestiviruses (BVDV-1, BVDV-2, and HoBiPeV) were evaluated in sheep. Thirty-seven sheep were immunized twice (day 0 and 25) and their serum samples were tested at different intervals (days 0, 25, 40, 60, and 90) post-vaccination (PV). Among the four vaccines tested, only one (G4) could induce the production of moderate neutralizing antibody titers against BoHV-1 and -5 and BVDV-1 and -2. The G3 vaccine showed a neutralizing serological response against the bovine alphaherpesviruses only. The G1 and G2 vaccines produced extremely low levels of antibodies in a few vaccinated animals only (geometric mean titers (GMT) 2.2). Similar levels of immunological responses were induced by the G4 vaccine against BoHV-1 and -5, and titers of neutralizing antibodies induced in approximately 70% of the animals are known to confer protection (GMT > 8). For bovine pestiviruses, the vaccine stimulated response of G4 against BVDV-2 was higher compared to that against BVDV-1, and extremely low for HoBiPeV. The peak of neutralizing antibodies to BoHV-1 and BVDV-1 was observed on days 40 and 60 PV, respectively. Thereafter, a remarkably decrease in neutralizing antibody response was observed at day 90 PV. These results demonstrated that tested commercial Uruguayan vaccines did not induce a serological response of adequate magnitude and duration. Thus, it is important to periodically review formulations and compositions of commercial vaccines against bovine alphaherpesviruses and pestiviruses.


2019 ◽  
Vol 220 (4) ◽  
pp. 594-602 ◽  
Author(s):  
Iris D Brinkman ◽  
Jelle de Wit ◽  
Gaby P Smits ◽  
Hinke I ten Hulscher ◽  
Maria C Jongerius ◽  
...  

AbstractBackgroundThe majority of infants will not be protected by maternal antibodies until their first measles vaccination, between 12 and 15 months of age. This provides incentive to reduce the age at measles vaccination, but immunological consequences are insufficiently understood, and long-term effects are largely unknown.MethodsA total of 79 infants who received early measles vaccination between 6 and 12 months age and a second dose at 14 months of age were compared to 44 children in a control group who received 1 dose at 14 months of age. Measles virus–specific neutralizing antibody concentrations and avidity were determined up to 4 years of age.ResultsInfants who first received measles vaccination before 12 months of age had a long-term decrease in the concentration and avidity of measles virus–specific neutralizing antibodies, compared with infants in the control group. For 11.1% of children with a first dose before 9 months of age, antibody levels at 4 years of age had dropped below the cutoff for clinical protection.ConclusionsEarly measles vaccination provides immediate protection in the majority of infants but yields a long-term decrease in neutralizing antibody responses, compared to vaccination at a later age. Additional vaccination at 14 months of age does not improve this. Over the long term, this may result in an increasing number of children susceptible to measles.


2021 ◽  
Author(s):  
Craig Fenwick ◽  
Priscilla Turelli ◽  
Celine Pellaton ◽  
Alex Farina ◽  
Jeremy Campos ◽  
...  

The detection of SARS-CoV-2-specific antibodies in the serum of an individual indicates prior infection or vaccination. However, it provides limited insight into the protective nature of this immune response. Neutralizing antibodies recognizing the viral Spike are far more revealing, yet their measurement traditionally requires virus- and cell-based systems that are costly, time-consuming, poorly flexible and potentially biohazardous. Here we present a cell-free quantitative neutralization assay based on the competitive inhibition of trimeric SARS-CoV-2 Spike protein binding to the angiotensin converting enzyme 2 (ACE2) viral receptor. This high-throughput method matches the performance of the gold standard live virus infectious assay, as verified with a panel of 206 seropositive donors with varying degrees of infection severity and virus-specific IgG titers, achieving 96.7% sensitivity and 100% specificity. Furthermore, it allows for the parallel assessment of neutralizing activities against multiple SARS-CoV-2 Spike variants of concern (VOC), which is otherwise unpredictable even in individuals displaying robust neutralizing antibody responses. Profiling serum samples from 59 hospitalized COVID-19 patients, we found that although most had high activity against the 2019-nCoV Spike and to a lesser extent the B.1.1.7 variant, only 58% could efficiently neutralize a Spike derivative containing mutations present in the B.1.351 variant. In conclusion, we have developed an assay that has proven its clinical relevance in the large-scale evaluation of effective neutralizing antibody responses to VOC after natural infection and that can be applied to the characterization of vaccine-induced antibody responses and of the potency of human monoclonal antibodies.


Author(s):  
Vincent Legros ◽  
Solène Denolly ◽  
Manon Vogrig ◽  
Bertrand Boson ◽  
Eglantine Siret ◽  
...  

AbstractUnderstanding the immune responses elicited by SARS-CoV-2 infection is critical in terms of protection against reinfection and, thus, for public health policy and vaccine development for COVID-19. In this study, using either live SARS-CoV-2 particles or retroviruses pseudotyped with the SARS-CoV-2 S viral surface protein (Spike), we studied the neutralizing antibody (nAb) response in serum samples from a cohort of 140 SARS-CoV-2 qPCR-confirmed infections, including patients with mild symptoms and also more severe forms, including those that required intensive care. We show that nAb titers correlated strongly with disease severity and with anti-spike IgG levels. Indeed, patients from intensive care units exhibited high nAb titers; conversely, patients with milder disease symptoms had heterogeneous nAb titers, and asymptomatic or exclusive outpatient-care patients had no or low nAbs. We found that nAb activity in SARS-CoV-2-infected patients displayed a relatively rapid decline after recovery compared to individuals infected with other coronaviruses. Moreover, we found an absence of cross-neutralization between endemic coronaviruses and SARS-CoV-2, indicating that previous infection by human coronaviruses may not generate protective nAbs against SARS-CoV-2. Finally, we found that the D614G mutation in the spike protein, which has recently been identified as the current major variant in Europe, does not allow neutralization escape. Altogether, our results contribute to our understanding of the immune correlates of SARS-CoV-2-induced disease, and rapid evaluation of the role of the humoral response in the pathogenesis of SARS-CoV-2 is warranted.


2008 ◽  
Vol 82 (12) ◽  
pp. 5912-5921 ◽  
Author(s):  
Zane Kraft ◽  
Katharine Strouss ◽  
William F. Sutton ◽  
Brad Cleveland ◽  
For Yue Tso ◽  
...  

ABSTRACT The vast majority of studies with candidate immunogens based on the human immunodeficiency virus envelope (Env) have been conducted with Env proteins derived from clade B viruses isolated during chronic infection. Whether non-clade B Env protein immunogens will elicit antibodies with epitope specificities that are similar to those of antibodies elicited by clade B Envs and whether the antibodies elicited by Envs derived from early transmitted viruses will be similar to those elicited by Envs derived from viruses isolated during chronic infection are currently unknown. Here we performed immunizations with four clade A Envs, cloned directly from the peripheral blood of infected individuals during acute infection, which differed in lengths and extents of glycosylation. The antibody responses elicited by these four Envs were compared to each other and to those elicited by a well-characterized clade B Env immunogen derived from the SF162 virus, which was isolated during chronic infection. Only one clade A Env, the one with the fewer glycosylation sites, elicited homologous neutralizing antibodies (NAbs); these did not target the V1, V2, or V3 regions. In contrast, all four clade A Envs elicited anti-V3 NAbs against “easy-to-neutralize” clade B and clade A isolates, irrespective of the variable region length and extent of glycosylation of the Env used as an immunogen. These anti-V3 NAbs did not access their epitopes on homologous and heterologous clade A, or B, neutralization-resistant viruses. The length and extent of glycosylation of the variable regions on the clade A Env immunogens tested did not affect the breadth of the elicited NAbs. Our data also indicate that the development of cross-reactive NAbs against clade A viruses faces similar hurdles to the development of cross-reactive anti-clade B NAbs.


2017 ◽  
Vol 47 (10) ◽  
Author(s):  
Mathias Martins ◽  
João Motta de Quadros ◽  
Eduardo Furtado Flores ◽  
Rudi Weiblen

ABSTRACT: The antibody response to rabies virus (RABV) induced by commercial vaccines in heifers was investigated. For this, 84 heifers were vaccinated twice (30 days interval) with each of four vaccines (G1 = 14 animals; G2 = 24; G3 = 22 and G4 = 24) and received a booster vaccination 360 days later. Serum samples collected at different intervals after vaccination and 30 days after booster were submitted to a virus neutralizing (VN) assay for RABV antibodies. Thirty days after the second vaccine dose, 92% of the immunized animals presented VN titers ≥0.5UI/mL (geometric medium titers [GMT] 1.7 to 3.8UI/mL). At the day of the booster (360 days post-vaccination); however, the percentage of animals harboring antibody titers ≥0.5UI/mL had dropped to 31% (0-80% of the animals, depending on the vaccine), resulting in lower GMT (0.1 to 0.6UI/mL). Booster vaccination at day 360 resulted in a detectable anamnestic response in all groups, resulting in 83% of animals (65 to 100%) harboring VN titers ≥0.5UI/mL thirty days later (GMT 0.6 to 4.3UI/mL). These results indicated that these vaccines were able to induce an adequate anti-RABV response in all animals after prime vaccination (and after booster as well). However, the titers decreased, reaching titers <0.5UI/mL in approximately 70% of animals within the interval before the recommended booster. Thus, booster vaccination for rabies in cattle using the current vaccines should be performed before the recommended one-year interval, as to maintain neutralizing antibodies levels in most vaccinated animals.


Sign in / Sign up

Export Citation Format

Share Document