scholarly journals Removal Efficiency and Mechanism of Cr(VI) from Aqueous Solution by Maize Straw Biochars Derived at Different Pyrolysis Temperatures

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 781 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Lv

The removal efficiency and mechanism of Cr(VI) removal from aqueous solution on semi-decomposed maize straw biochars pyrolyzed at 300 to 600 °C were investigated. The removal of Cr(VI) by the biochars decreased with pyrolysis temperature increasing from 300 to 600 °C, and the maximum removal capacity of Cr(VI) for maize straw biochar pyrolyzed at 300 °C was 91 mg/g at pH 2.0. The percentage removal of Cr(VI) rapidly decreased with pH increasing from 2.0 to 8.0, with the maximum (>99.9%) at pH 2.0. The variation of Cr(VI) and Cr(III) concentrations in the solution after reaction showed that Cr(VI) concentration decreased while Cr(III) increased and the equilibrium was reached after 48 h, while the redox potential after reaction decreased due to Cr(VI) reduction. X-ray photoelectron spectroscopy (XPS) semi-quantitative analysis showed that Cr(III) accounted for 75.7% of the total Cr bound to maize straw biochar, which indicated reductive adsorption was responsible for Cr(VI) removal by the biochars. Cr(VI) was firstly adsorbed onto the positively charged biochar surface and reduced to Cr(III) by electrons provided by oxygen-containing functional groups (e.g., C=O), and subsequently part of the converted Cr(III) remained on the biochar surface and the rest released into solution. Fourier transform infrared (FTIR) data indicated the participation of C=O, Si–O, –CH2 and –CH3 groups in Cr(VI) removal by the biochars. This study showed that maize straw biochar pyrolyzed at 300 °C for 2 h was one low-cost and efficient adsorbent for Cr(VI) removal from aqueous solution.

Author(s):  
Yi Fang ◽  
Ke Yang ◽  
Yipeng Zhang ◽  
Changsheng Peng ◽  
Aurora Robledo-Cabrera ◽  
...  

Abstract Activated carbon has been widely used to remove hazardous Cr(VI), however, the impact of Cr2O3 precipitate on gradually declined removal ability as pH increased has received little attention. Herein, to investigate the effect of Cr2O3, SEM-EDX (scanning electron microscope-energy dispersive X-ray analysis) coupling elements mapping of chromium loaded powder activated carbon (PAC) revealed that a chromium layer was formed on the PAC exterior after being treated with Cr(VI) at pH 7. XPS (X-ray photoelectron spectroscopy) study confirmed that 69.93% and 39.91% Cr2O3 precipitated on the PAC surface at pH 7 and pH 3, respectively, corresponding to 17.77 mg/g and 20 mg/g removal capacity. Exhausted PAC had a removal efficiency of 92.43% after Cr2O3 being washed by H2SO4 solution, which was much higher than the removal efficiency of 51.27 % after NaOH washing. This further verified the intrinsically developed Cr2O3 precipitate on PAC under neutral conditions limited the durability of PAC as an adsorbent. Consecutive elution assessments confirmed that adsorption and reduction ability both declined as pH increased. Raman spectroscopy and C 1s spectra of materials demonstrated two distinct Cr(VI) removal mechanisms under pH 3 and pH 7. In conclusion, the exhausted AC after Cr(VI) adsorption can be rejuvenated after the surface coated Cr2O3 being washed by the acid solution which can expand the longevity of AC and recover Cr(III). HIGHLIGHT In this work, we scrutinized the mechanism of poor removal capacity of commercial activated carbon on toxic heavy metal Cr(VI) under neutral pH conditions. Differing from the most accepted view that electrostatic repulsion is the main consideration, our study suggested that the relatively more Cr2O3 precipitate on the surface of activated carbon under higher pH led to the low Cr(VI) sequestration capability.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 711 ◽  
Author(s):  
Yingying Wen ◽  
Yong Ji ◽  
Shifeng Zhang ◽  
Jie Zhang ◽  
Gaotang Cai

The fabrication of functional lignocellulose-based materials has drawn considerable attention because it acts as a green separation/absorption material owing to its multi-porous mesostructure. In this study, a surface functionalized lignocellulose-based adsorbent for the highly efficient capture of Cd(II) ions was prepared through facile in situ co-deposition of wood waste-derived saw powder (SP) in the presence of tannic acid (TA) and aminopropyltriethoxysilane (APTES) mixed aqueous solution. The SP was first modified using TA-APTES coating to synthesize the functional SP substrate (SP-(TA-APTES)). The SP-(TA-APTES) hybrids served as reactive platforms, which enabled further decoration with amino-rich polyethylenimine (PEI) due to the outstanding secondary reactions of the TA-APTES layer. The surface morphology of the resulting SP-(TA-APTES)-PEI (SP-TAPI) composites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Significantly, the combined advantages of the lignocellulosic skeleton, the layer-particle structure, and the hybrid coating contributed to the enhanced adsorption capacity of Cd(II) (up to 22.66 mg/g at pH = 5.0). This removal capacity was higher than that of most reported agricultural waste-based or lignocellulose-based materials. The Cd(II) adsorption mechanism of the surface-modified SP-TAPI composites was studied in detail. These results provide new insights into the high value-added utilization of agricultural waste for water purification applications.


2014 ◽  
Vol 931-932 ◽  
pp. 251-255
Author(s):  
Thanatcha Potiya ◽  
Peerakarn Banjerdkij ◽  
Nuttaporn Pimpha

Nitric acid modified water treatment sludge (NS) was used as an adsorbent for methylene blue (MB) removal from aqueous solution in a batch experiment system. Surface area and pore volume were characterized by BET-N2 method. Zeta potential measurements of the NS showed a negatively charge which has the potential to attract positively charged molecules. The effect of initial MB concentration and initial pH solution were investigated. When the initial MB concentration was increased, the percentage of MB removal decreased accordingly while the amount of adsorbed MB on NS at equilibrium time (qe) increased. For the effect of initial pH solution, the adsorption of MB was increased with increase in pH. The maximum removal was observed at pH 11. The result indicates that NS can be used as low cost adsorbent in wastewater treatment for cationic dye removal.


2017 ◽  
Vol 76 (10) ◽  
pp. 2680-2689 ◽  
Author(s):  
Kaixuan Ma ◽  
Qiu Wang ◽  
Qianyun Rong ◽  
Dapeng Zhang ◽  
Shihai Cui ◽  
...  

Abstract Nanoscale zero-valent iron (NZVI) was first assembled on magnetic carbon/Fe3O4 (CM) with a combination of hydrothermal and liquid phase reduction methods. The novel NZVI@CM magnetic nanocomposites have the merits of large surface area, unique magnetic property, low cost and environmental friendliness. They can be used for Pb(II) removal in aqueous solution. The materials were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) adsorption. The various parameters, such as reaction time, dosage of catalyst, solution pH and acid ions concentrations were studied. The removal efficiency of Pb(II) can be obviously increased by the combination of appropriate CM and NZVI. The removal efficiency of Pb(II) is 99.7% by using 60 mg of NZVI@CM at pH 7. The kinetics study indicates that the Pb(II) removal accords to pseudo-second-order kinetics model.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7545
Author(s):  
Marwa Elkady ◽  
Kamal E. Diab ◽  
Hassan Shokry

The synthesis of Bio-MOF using aspartic acid as an organic linker and water as a solvent was performed to create an environmentally friendly material. The chemical composition, structure, and morphology of the synthesized zirconium Bio-MOF (MIP-202) was evaluated using X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The synthesized Bio-MOF was used as an adsorbent for trimethoprim antibiotic as pollutants from an aqueous solution under various operating parameters. The increase in the initial trimethoprim concentration from 2.5 mg/L to 20 mg/L decreased the decontamination efficiency from 77.6% to 35.9% at a solution pH of 7 with 0.5 g/L adsorbent dose after 60 min reaction time. The rise of adsorbent dose from 0.1 g/L to 1.5 g/L increased the removal efficiency from 47.7% to 87.6%. The maximum trimethoprim removal efficiency of 95% was attained at a solution pH of 11. Langmuir and pseudo-second order models described the adsorption process of trimethoprim antibiotic onto zirconium Bio-MOF and the chemo-physical nature of trimethoprim adsorption onto the synthesized zirconium Bio-MOF. Accordingly, it was evident that the prepared zirconium Bio-MOF (MIP-202) is an ecofriendly and efficient adsorbent for antibiotic decontamination from polluted water.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiao Li Ma ◽  
Guang Tao Fei ◽  
Shao Hui Xu

Abstract In this study, polyaniline (PANI) is prepared by means of chemical oxidization polymerization and directly loaded on the modified fiber ball (m-FB) to obtain macroscale polyaniline/modified fiber ball (PANI/m-FB) composite, and then its removal ability of Cr(VI) is investigated. The effects of different parameters such as contact time, pH value and initial concentration on Cr(VI) removal efficiency are discussed. The experimental results illustrate that the favorable pH value is 5.0 and the maximum removal capacity is measured to be 293.13 mg g−1. Besides, PANI/m-FB composites can be regenerated and reused after being treated with strong acid. The kinetic study indicates that the adsorption procedure is mainly controlled by chemical adsorption. More importantly, the macroscale of composites can avoid secondary pollution efficiently. Benefiting from the low cost, easy preparation in large scale, environmentally friendly, excellent recycling performance as well as high removal ability, PANI/m-FB composites exhibit a potential possibility to remove Cr(VI) from industrial waste water. Graphic Abstract The polyaniline (PANI) was coated on modified fiber ball (m-FB) to remove Cr(VI) in waste water, and this kind of PANI/m-FB composites can avoid secondary pollution efficiently due to its macrostructure. Furthermore, the removal capacity can reach to 291.13 mg/g and can be multiple reused.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jien Ye ◽  
Yi Wang ◽  
Qiao Xu ◽  
Hanxin Wu ◽  
Jianhao Tong ◽  
...  

AbstractPassivation of nanoscale zerovalent iron hinders its efficiency in water treatment, and loading another catalytic metal has been found to improve the efficiency significantly. In this study, Cu/Fe bimetallic nanoparticles were prepared by liquid-phase chemical reduction for removal of hexavalent chromium (Cr(VI)) from wastewater. Synthesized bimetallic nanoparticles were characterized by transmission electron microscopy, Brunauer–Emmet–Teller isotherm, and X-ray diffraction. The results showed that Cu loading can significantly enhance the removal efficiency of Cr(VI) by 29.3% to 84.0%, and the optimal Cu loading rate was 3% (wt%). The removal efficiency decreased with increasing initial pH and Cr(VI) concentration. The removal of Cr(VI) was better fitted by pseudo-second-order model than pseudo-first-order model. Thermodynamic analysis revealed that the Cr(VI) removal was spontaneous and endothermic, and the increase of reaction temperature facilitated the process. X-ray photoelectron spectroscopy (XPS) analysis indicated that Cr(VI) was completely reduced to Cr(III) and precipitated on the particle surface as hydroxylated Cr(OH)3 and CrxFe1−x(OH)3 coprecipitation. Our work could be beneficial for the application of iron-based nanomaterials in remediation of wastewater.


2021 ◽  
Vol 22 (9) ◽  
pp. 4433
Author(s):  
Eun Sung Lee ◽  
Byung Seok Cha ◽  
Seokjoon Kim ◽  
Ki Soo Park

In recent years, fluorescent metal nanoclusters have been used to develop bioimaging and sensing technology. Notably, protein-templated fluorescent gold nanoclusters (AuNCs) are attracting interest due to their excellent fluorescence properties and biocompatibility. Herein, we used an exosome template to synthesize AuNCs in an eco-friendly manner that required neither harsh conditions nor toxic chemicals. Specifically, we used a neutral (pH 7) and alkaline (pH 11.5) pH to synthesize two different exosome-based AuNCs (exo-AuNCs) with independent blue and red emission. Using field-emission scanning electron microscopy, energy dispersive X-ray microanalysis, nanoparticle tracking analysis, and X-ray photoelectron spectroscopy, we demonstrated that AuNCs were successfully formed in the exosomes. Red-emitting exo-AuNCs were found to have a larger Stokes shift and a stronger fluorescence intensity than the blue-emitting exo-AuNCs. Both exo-AuNCs were compatible with MCF-7 (human breast cancer), HeLa (human cervical cancer), and HT29 (human colon cancer) cells, although blue-emitting exo-AuNCs were cytotoxic at high concentrations (≥5 mg/mL). Red-emitting exo-AuNCs successfully stained the nucleus and were compatible with membrane-staining dyes. This is the first study to use exosomes to synthesize fluorescent nanomaterials for cellular imaging applications. As exosomes are naturally produced via secretion from almost all types of cell, the proposed method could serve as a strategy for low-cost production of versatile nanomaterials.


2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


Sign in / Sign up

Export Citation Format

Share Document