scholarly journals The Influence of Hydrometeorological Conditions on Changes in Littoral and Riparian Vegetation of a Meromictic Lake in the Last Half-Century

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2651 ◽  
Author(s):  
Bogumił Nowak ◽  
Agnieszka E. Lawniczak-Malińska

Changes in water levels in lakes play an important role in the development of their coastal zones and water trophy. The aim of this study was to assess the role of changes in hydrometeorological conditions in the development of littoral and riparian vegetation of a meromictic lake during the last half-century. The study was carried out in Lake Powidzkie, one of the largest water reservoirs located in central Poland. Water level and meteorological conditions were analyzed in the period 1961–2015. Modifications in the range of plant communities were analyzed on the basis of cartographic materials and field studies. Meteorological conditions, especially precipitation and evaporation, were found to strongly affect the lake's water retention, whilst they had less of an effect on water levels. A significant effect of the lowering of the water level in Lake Powidzkie on the development of the littoral zone, whose area more than doubled over the last half-century, from 41.5 to 118.8 ha, was noted. The most dynamic development of the littoral was observed in the last quarter of the century, in which three of several years of low-flow were recorded. The occurrence of periods with an increased amount of precipitation, after dry periods, did not contribute to the reduction of the size of the rush zone and limitation of the development of woody vegetation.

2021 ◽  
Author(s):  
Marjolaine Roux ◽  
Marie Larocque ◽  
Philippe Nolet ◽  
Sylvain Gagné

<p>Ephemeral pools are geographically isolated wetlands commonly found in temperate forests of northeastern North America. These wetlands are usually hydrologically isolated from the surface water network but in some conditions can be connected to local groundwater flow. They fill at maximal capacity following spring snowmelt and dry out during summer. They contribute to forest biodiversity by providing breeding habitats for amphibians during their spring and early summer period of hydrological activity. However, ephemeral pools are poorly understood and rarely studied because of their small dimensions and temporary hydrology. This work presents the final results of a five-year study aimed to acquire new knowledge on ephemeral pool hydrology to go beyond the anecdotical pool and to understand the conditions and processes that driving their hydrology. A large number of pools (39) located in the Canadian Shield forest were instrumented to monitor hourly water level variations in the pool and in the neighboring and underlying fractured bedrock aquifer. They were also described in extensive details for their geomorphological features and water levels over a period from one to five years (April 2016 to July 2020). The first rather surprising result from this work is that, although the pools are all located in bedrock depressions, they cover a wide range of morphologies. Their maximum sizes vary from 29 to 1866 m<sup>2</sup> and their maximal volumes vary from 4 to 654 m<sup>3</sup>. Their maximum water depths are also highly contrasted, ranging from 0.14 m to 2.03 m. The pool depressions are overlain by mineral sediments (silt to fine sand with occurrences of coarse sand and gravel) of contrasted thicknesses (0 m to 1.70 m). An organic matter layer of highly varying thickness (0.12 m to 1.24 m) was observed at all sites above the mineral sediments. Despite these varied morphological conditions, all the pools have similar hydrological patterns throughout the year and these patterns are highly resilient to meteorological conditions. They dry out between the end of May and the end of July, rapid temporary refilling during important summer rainfall events, and partially refilling in autumn following more frequent rainfall events and lower evapotranspiration. The results show that surface water levels are maintained when the underlying sediments are saturated. Otherwise, the ephemeral pools lose water by infiltration to the underlying aquifer. Water level variations within the pools are positively and significantly correlated with net precipitation (P – PET). Hydroperiods vary between 28 days (2020) and 86 days (2017), reflecting the year-to-year meteorological variability. The mean hydroperiod is significantly correlated to spring rainfall (April to June), but also to the volume of water stored in the pool, and to the pool surface area. This study provides a unique and original dataset that contribute to better understand the hydrodynamics and resilience to anthropogenic (forestry) and natural (climate change) impacts of a wetland type that is rarely studied but provide crucial habitats for forest biodiversity.</p>


2021 ◽  
Author(s):  
Amelie Herzog ◽  
Kerstin Stahl ◽  
Markus Weiler ◽  
Veit Blauhut

<p>Even largely perennial rivers can fall dry during drought events. A resulting partial or full drying-up of streambeds is difficult to monitor with conventional gauging stations, but important as it heavily impacts water availability, quality and aquatic ecosystems. With a predicted tendency towards more extreme droughts, event-based intermittency is likely to increase requiring a better longitudinal quantification of water level and streamflow conditions. The Dreisam River in the south-west of Germany is a stream with a highly dynamic hydrology. In the recent extreme drought years of 2015, 2018 and 2019 the main stream and tributaries partly fell dry; whereas the main gauging station still recorded flow. Furthermore, several tributaries fell dry in 2016, 2017 and 2019.To improve the understanding of the interaction between streamflow, groundwater and water usages in low flow and zero-flow situations, a flexible longitudinal water quality and quantity monitoring network was developed. Different techniques such as QR-code-reading camera systems and ultrasound devices to log water levels as well as water temperature and electrical conductivity sensors were used. The set-up was additionally equipped with conventional capacitive water level loggers. Here, we present a comparison of the different water level monitoring techniques in order to a) evaluate the advantages and limits of the novel techniques and b) investigate any added value of longitudinal, catchment wide zero level monitoring. The results show that the choice of the measurement sites' environment, including shading of QR-codes, light reflections of the water surface and streambed topography, is crucial for a successful application of the used techniques. The distributed gauges reveal a highly variable longitudinal drying pattern within the river network that appears to be event-specific and may not be explained without consideration of all natural and altered system fluxes.</p>


2014 ◽  
Vol 14 (4) ◽  
pp. 187-194 ◽  
Author(s):  
Adam Piasecki ◽  
Włodzimierz Marszelewski

Abstract The article discusses water level fluctuations in lakes and the associated changes in the lake surface and water resources in the years 1992-2011. On the basis of detailed field studies carried out in the hydrological year 2011, short-term and dynamic changes in the lakes’ hydrology were determined. Changes in hydrological lake types were evoked by unexpected hydro-meteorological situations, in particular high precipitation totals and sudden thaws in winter. The main symptom of the lake type change was the restoration, after nearly 10 years, of channels connecting the lakes. In addition, a strong interdependence was recorded in the difference between evaporation and precipitation, as well as the mean annual ranges of lake water levels in the years 1992-2010


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


1998 ◽  
Vol 37 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Elisa Garvey ◽  
John E. Tobiason ◽  
Michael Hayes ◽  
Evelyn Wolfram ◽  
David A. Reckhow ◽  
...  

This paper reports on field studies and model development aimed at understanding coliform fate and transport in the Quabbin Reservoir, an oligotrophic drinking water supply reservoir. An investigation of reservoir currents suggested the importance of wind driven phenomena, and that both lateral and vertical circulation patterns exist. In-situ experiments of coliform decay suggested dependence on light intensity and yielded an appropriate decay coefficient to be used in CE-QUAL-W2, a two-dimensional hydrodynamic and water quality model. Modeling confirmed the sensitivity of reservoir outlet concentration to vertical variability within the reservoir, meteorological conditions, and location of coliform source.


2018 ◽  
Author(s):  
Alfredo L. Aretxabaleta ◽  
Neil K. Ganju ◽  
Zafer Defne ◽  
Richard P. Signell

Abstract. Water level in semi-enclosed bays, landward of barrier islands, is mainly driven by offshore sea level fluctuations that are modulated by bay geometry and bathymetry, causing spatial variability in the ensuing response (transfer). Local wind setup can have a secondary role that depends on wind speed, fetch, and relative orientation of the wind direction and the bay. Inlet geometry and bathymetry primarily regulate the magnitude of the transfer between open ocean and bay. Tides and short-period offshore oscillations are more damped in the bays than longer-lasting offshore fluctuations, such as storm surge and sea level rise. We compare observed and modeled water levels at stations in a mid-Atlantic bay (Barnegat Bay) with offshore water level proxies. Observed water levels in Barnegat Bay are compared and combined with model results from the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system to evaluate the spatial structure of the water level transfer. Analytical models based on the dimensional characteristics of the bay are used to combine the observed data and the numerical model results in a physically consistent approach. Model water level transfers match observed values at locations inside the Bay in the storm frequency band (transfers ranging from 70–100 %) and tidal frequencies (10–55 %). The contribution of frequency-dependent local setup caused by wind acting along the bay is also considered. The approach provides transfer estimates for locations inside the Bay where observations were not available resulting in a complete spatial characterization. The approach allows for the study of the Bay response to alternative forcing scenarios (landscape changes, future storms, and rising sea level). Detailed spatial estimates of water level transfer can inform decisions on inlet management and contribute to the assessment of current and future flooding hazard in back-barrier bays and along mainland shorelines.


Sign in / Sign up

Export Citation Format

Share Document