scholarly journals Rainfall-Runoff Modeling of the Nested Non-Homogeneous Sava River Sub-Catchments in Slovenia

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 128 ◽  
Author(s):  
Katarina Lavtar ◽  
Nejc Bezak ◽  
Mojca Šraj

Rainfall-runoff modeling is nowadays applied for water resources management, water system design, real-time forecasting, flood design and can be carried out by using different types of hydrological models. In this study, we focused on lumped conceptual hydrological models and their performance in diverse sub-catchments of the Sava River in Slovenia, related to their size and non-homogeneity. We evaluated the difference between modeled and measured discharges of selected discharge gauging stations, using different model performance criteria that are usually applied in hydrology, connecting the results to geospatial analysis of geological and hydrogeological characteristics, land use, runoff potential, proportion of agglomeration and various meteorological variables. Better model performance was obtained for catchments with a higher runoff potential and with less variations in meteorological variables. Regarding the number of used parameters, the results indicated that the tested Genie Rural 6-parameter Journalier (GR6J) model with 6 parameters performed better than the Genie Rural 4-parameter Journalier (GR4J) model with 4 parameters, especially in the case of larger sub-catchments. These results illustrate the comprehensive nature of lumped models. Thus, they yield good performance in case of the catchments with indistinguishable characteristics.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1456
Author(s):  
Kee-Won Seong ◽  
Jang Hyun Sung

An oscillatory S-curve causes unexpected fluctuations in a unit hydrograph (UH) of desired duration or an instantaneous UH (IUH) that may affect the constraints for hydrologic stability. On the other hand, the Savitzky–Golay smoothing and differentiation filter (SG filter) is a digital filter known to smooth data without distorting the signal tendency. The present study proposes a method based on the SG filter to cope with oscillatory S-curves. Compared to previous conventional methods, the application of the SG filter to an S-curve was shown to drastically reduce the oscillation problems on the UH and IUH. In this method, the SG filter parameters are selected to give the minimum influence on smoothing and differentiation. Based on runoff reproduction results and performance criteria, it appears that the SG filter performed both smoothing and differentiation without the remarkable variation of hydrograph properties such as peak or time-to peak. The IUH, UH, and S-curve were estimated using storm data from two watersheds. The reproduced runoffs showed high levels of model performance criteria. In addition, the analyses of two other watersheds revealed that small watershed areas may experience scale problems. The proposed method is believed to be valuable when error-prone data are involved in analyzing the linear rainfall–runoff relationship.


2012 ◽  
Vol 13 (1) ◽  
pp. 122-139 ◽  
Author(s):  
Jin Teng ◽  
Jai Vaze ◽  
Francis H. S. Chiew ◽  
Biao Wang ◽  
Jean-Michel Perraud

Abstract This paper assesses the relative uncertainties from GCMs and from hydrological models in modeling climate change impact on runoff across southeast Australia. Five lumped conceptual daily rainfall–runoff models are used to model runoff using historical daily climate series and using future climate series obtained by empirically scaling the historical climate series informed by simulations from 15 GCMs. The majority of the GCMs project a drier future for this region, particularly in the southern parts, and this is amplified as a bigger reduction in the runoff. The results indicate that the uncertainty sourced from the GCMs is much larger than the uncertainty in the rainfall–runoff models. The variability in the climate change impact on runoff results for one rainfall–runoff model informed by 15 GCMs (an about 28%–35% difference between the minimum and maximum results for mean annual, mean seasonal, and high runoff) is considerably larger than the variability in the results between the five rainfall–runoff models informed by 1 GCM (a less than 7% difference between the minimum and maximum results). The difference between the rainfall–runoff modeling results is larger in the drier regions for scenarios of big declines in future rainfall and in the low-flow characteristics. The rainfall–runoff modeling here considers only the runoff sensitivity to changes in the input climate data (primarily daily rainfall), and the difference between the hydrological modeling results is likely to be greater if potential changes in the climate–runoff relationship in a warmer and higher CO2 environment are modeled.


2021 ◽  
Author(s):  
Kazuki yokoo ◽  
Kei ishida ◽  
Takeyoshi nagasato ◽  
Ali Ercan

<p>In recent years, deep learning has been applied to various issues in natural science, including hydrology. These application results show its high applicability. There are some studies that performed rainfall-runoff modeling by means of a deep learning method, LSTM (Long Short-Term Memory). LSTM is a kind of RNN (Recurrent Neural Networks) that is suitable for modeling time series data with long-term dependence. These studies showed the capability of LSTM for rainfall-runoff modeling. However, there are few studies that investigate the effects of input variables on the estimation accuracy. Therefore, this study, investigated the effects of the selection of input variables on the accuracy of a rainfall-runoff model by means of LSTM. As the study watershed, this study selected a snow-dominated watershed, the Ishikari River basin, which is in the Hokkaido region of Japan. The flow discharge was obtained at a gauging station near the outlet of the river as the target data. For the input data to the model, Meteorological variables were obtained from an atmospheric reanalysis dataset, ERA5, in addition to the gridded precipitation dataset. The selected meteorological variables were air temperature, evaporation, longwave radiation, shortwave radiation, and mean sea level pressure. Then, the rainfall-runoff model was trained with several combinations of the input variables. After the training, the model accuracy was compared among the combinations. The use of meteorological variables in addition to precipitation and air temperature as input improved the model accuracy. In some cases, however, the model accuracy was worsened by using more variables as input. The results indicate the importance to select adequate variables as input for rainfall-runoff modeling by LSTM.</p>


2016 ◽  
Vol 48 (1) ◽  
pp. 48-65 ◽  
Author(s):  
Jie Chen ◽  
Richard Arsenault ◽  
François P. Brissette

Sobol’ sensitivity analysis has been used successfully in the past to reduce the parametric dimensionality for hydrological models. However, the effects of its limitation, in that it assumes an independence of parameters, need to be investigated. This study proposes an experimental approach to assess the commonly used Sobol’ analysis for reducing the parameter dimensionality of hydrological models. In this approach, the number of model parameters is directly pitted against an efficiency criterion within a multi-objective genetic algorithm (MOGA), thus allowing both the identification of key model parameters and the optimal number of parameters to be used within the same analysis. The proposed approach was tested and compared with the Sobol’ method based on a conceptual lumped hydrological model (HSAMI) with 23 free parameters. The results show that both methods performed very similarly, and allowed 11 out of 23 HSAMI parameters to be reduced with little loss in model performance. Based on this comparison, Sobol’ appears to be an effective and robust method despite its limitations. On the other hand, the MOGA algorithm outperformed Sobol’ analysis for further reduction of the parametric space and found optimal solutions with as few as eight parameters with minimal performance loss in validation.


2007 ◽  
Vol 11 (2) ◽  
pp. 703-710 ◽  
Author(s):  
A. Bárdossy

Abstract. The parameters of hydrological models for catchments with few or no discharge records can be estimated using regional information. One can assume that catchments with similar characteristics show a similar hydrological behaviour and thus can be modeled using similar model parameters. Therefore a regionalisation of the hydrological model parameters on the basis of catchment characteristics is plausible. However, due to the non-uniqueness of the rainfall-runoff model parameters (equifinality), a workflow of regional parameter estimation by model calibration and a subsequent fit of a regional function is not appropriate. In this paper a different approach for the transfer of entire parameter sets from one catchment to another is discussed. Parameter sets are considered as tranferable if the corresponding model performance (defined as the Nash-Sutclife efficiency) on the donor catchment is good and the regional statistics: means and variances of annual discharges estimated from catchment properties and annual climate statistics for the recipient catchment are well reproduced by the model. The methodology is applied to a set of 16 catchments in the German part of the Rhine catchments. Results show that the parameters transfered according to the above criteria perform well on the target catchments.


2020 ◽  
Author(s):  
Antoine Thiboult ◽  
Gregory Seiller ◽  
Carine Poncelet ◽  
François Anctil

Abstract. This technical report introduces the HydrOlOgical Prediction LAboratory (HOOPLA) developed at Université Lavalfor ensemble lumped hydrological modelling. HOOPLA includes functionalities to perform calibration, simulation, and forecast for multiple hydrological models and various time steps. It includes a range of hydrometeorological tools such as calibration algorithms, data assimilation techniques, potential evapotranspiration formulas and a snow accounting routine. HOOPLA is a flexible framework coded in MATLAB that allows easy integration of user-defined hydrometeorological tools. This report also illustrates HOOPLA's functionalities using a set of 31 Canadian catchments.


2007 ◽  
Vol 4 (6) ◽  
pp. 4325-4360 ◽  
Author(s):  
A. H. te Linde ◽  
J. C. J. H. Aerts ◽  
R. T. W. L. Hurkmans ◽  
M. Eberle

Abstract. Due to the growing wish and necessity to simulate the possible effects of climate change on the discharge regime on large rivers such as the Rhine in Europe, there is a need for well performing hydrological models that can be applied in climate change scenario studies. There exists large variety in available models and there is an ongoing debate in research on rainfall-runoff modelling on whether or not physically based distributed models better represent observed discharges than conceptual lumped model approaches do. In this paper, the hydrological models HBV and VIC were compared for the Rhine basin by testing their performance in simulating discharge. Overall, the semi-distributed conceptual HBV model performed much better than the distributed physically based VIC model (E=0.62, r2=0.65 vs. E=0.31, r2=0.54 at Lobith). It is argued here that even for a well-documented river basin such as the Rhine, more complex modelling does not automatically lead to better results. Moreover, it is concluded that meteorological forcing data has a considerable influence on model performance, irrespectively to the type of model structure and the need for ground-based meteorological measurements is emphasized.


2019 ◽  
Vol 23 (12) ◽  
pp. 5089-5110 ◽  
Author(s):  
Frederik Kratzert ◽  
Daniel Klotz ◽  
Guy Shalev ◽  
Günter Klambauer ◽  
Sepp Hochreiter ◽  
...  

Abstract. Regional rainfall–runoff modeling is an old but still mostly outstanding problem in the hydrological sciences. The problem currently is that traditional hydrological models degrade significantly in performance when calibrated for multiple basins together instead of for a single basin alone. In this paper, we propose a novel, data-driven approach using Long Short-Term Memory networks (LSTMs) and demonstrate that under a “big data” paradigm, this is not necessarily the case. By training a single LSTM model on 531 basins from the CAMELS dataset using meteorological time series data and static catchment attributes, we were able to significantly improve performance compared to a set of several different hydrological benchmark models. Our proposed approach not only significantly outperforms hydrological models that were calibrated regionally, but also achieves better performance than hydrological models that were calibrated for each basin individually. Furthermore, we propose an adaption to the standard LSTM architecture, which we call an Entity-Aware-LSTM (EA-LSTM), that allows for learning catchment similarities as a feature layer in a deep learning model. We show that these learned catchment similarities correspond well to what we would expect from prior hydrological understanding.


2019 ◽  
Vol 80 (3) ◽  
pp. 517-528 ◽  
Author(s):  
Qing Chang ◽  
So Kazama ◽  
Yoshiya Touge ◽  
Shunsuke Aita

Abstract Selecting a proper spatial resolution for urban rainfall runoff modeling was not a trivial issue because it could affect the model outputs. Recently, the development of remote sensing technology and increasingly available data source had enabled rainfall runoff process to be modeled at detailed and microscales. However, the models with less complexity might have equally good performance with less model establishment and computation time. This study attempted to explore the impact of model spatial resolution on model performance and parameters. Models with different discretization degree were built up on the basis of actual drainage networks, urban parcels and specific land use. The results showed that there was very little difference in the total runoff volumes while peak flows showed obvious scale effects which could be up to 30%. Generally, model calibration could compensate the scale effect. The calibrated models with different resolution showed similar performances. The consideration of effective impervious area (EIA) as a calibration parameter marginally increased performance of the calibration period but also slightly decreased performance in the validation period which indicated the importance of detailed EIA identification.


2021 ◽  
Vol 958 (1) ◽  
pp. 012016
Author(s):  
F Vilaseca ◽  
S Narbondo ◽  
C Chreties ◽  
A Castro ◽  
A Gorgoglione

Abstract In Uruguay, the Santa Lucía Chico watershed has been studied in several hydrologic/hydraulic works due to its economic and social importance. However, few studies have been focused on water balance computation in this watershed. In this work, two daily rainfall-runoff models, a distributed (SWAT) and a lumped one (GR4J), were implemented at two subbasins of the Santa Lucía Chico watershed, with the aim of providing a thorough comparison for simulating daily hydrographs and identify possible scenarios in which each approach is more suitable than the other. Results showed that a distributed and complex model like SWAT performs better in watersheds characterized by anthropic interventions such as dams, which can be explicitly represented. On the other hand, for watersheds with no significant reservoirs, the use of a complex model may not be justified due to the higher effort required in modeling design, implementation, and computational cost, which is not reflected in a significant improvement of model performance.


Sign in / Sign up

Export Citation Format

Share Document