scholarly journals Water Quality of Freshwater Ecosystems in a Temperate Climate

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2643
Author(s):  
Piotr Klimaszyk ◽  
Ryszard Gołdyn

Water is the substance that made life on Earth possible. It plays a key role in both the individual and population development of all species. Water is also a critical resource for humans as populations continue to grow and climate change affects global and local water cycles. Water is a factor limiting economic development in many regions of the world. Under these conditions, good water quality becomes an extremely important factor that determines its economic utility, including water supply, recreation, and agriculture. Proper water quality maintenance of freshwater ecosystems is also very important for preserving biodiversity. The quality of water depends on many factors, the most important of which are related to human impact on water ecosystems, especially the impact of various pollutants from municipal economy, industry and agriculture. Hydrotechnical changes, such as river damming, drainage processes and water transport between catchments also have a significant impact. Water quality is also dependent on the impact of natural conditions connected, e.g., with climate, catchment, water organisms and their interactions within the food-webs, etc. This Special Issue consists of fourteen original scientific papers concerning different problems associated with the water quality of freshwater ecosystems in a temperate climate. Most of the articles deal with the relations between water quality and the structure of ecosystem biocenoses. The conclusion of these articles confirms the fact that the deterioration of water quality has a direct impact on the quantitative and qualitative structure of biocenoses. This is accompanied by a decline in biodiversity and the disappearance of rare plant and animal species. They also draw attention to the particular importance of internal physical and chemical differentiation within the aquatic ecosystem, both in horizontal and vertical dimensions. The problem of ensuring proper ecological conditions and good quality of water in freshwater aquatic ecosystems is also raised, and methods for the restoration of water bodies are presented. The majority of the research presented in this Special Issue was carried out in Central Europe, and one of the papers concerns the area of West Africa—the edge of temperate climate zone.

Author(s):  
Petra Nováková

The aim of the work was to elaborate and evaluate the water quality of water reservoir Vranov nad Dyjí. Fresh water was sampled in five different locations of the reservoir (three important tributaries, dam and water captation locality). Ten, the most essential water quality indicators were selected. From the point of view of water quality indicators complexity the most integrated samples were taken in the water captation locality (period 1984 – 2002). At other locations, there were missing dates from the eightieth, but their volume was sufficient for statistical processing.Correlation analyses for the individual locations and dimensions were done as so as determination coefficients for all localities during the time period of 1994 – 2002. The results demonstrate very good allocation of the water captation from the point of view of the water flow.Multiples and factor analysis was done for the period of 1984 – 2002 in the locality Jelení zátoka where the object of water captation is situated. The results of the analysis are nine factors, which influence the water quality of the reservoir. From the point of view of the importance three factors were interpreted.The analyses and results are part of my Ph.D. thesis. The results will be used for other evaluations of the water quality in the reservoir and tributaries, for activities in the catchment’s area and for proposal processing other zones of second level of protected areas.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mansoor A. Baluch ◽  
Hashim Nisar Hashmi

Water quality of the Indus River around the upper basin and the main river was evaluated with the help of statistical analysis. In order to analyze the similarities and dissimilarities for identifying the spatial variations in water quality of the Indus River and sources of contamination, multivariate statistical analysis, i.e., principle component analysis (PCA), cluster analysis, and descriptive analysis, was done. Data of 8 physicochemical quality parameters from 64 sampling stations belonging to 6 regions (labeled as M1, M2, M3, M4, M5, and M6) were used for analysis. The parameters used for assessing the water quality were pH, dissolved oxygen (DO), oxygen reducing potential (ORP), electrical conductivity (EC), total dissolved solids (TDS), salinity (%), and concentration of arsenic (As) and lead (Pb), respectively. PCA assisted in extracting and recognizing the responsible variation factors of water quality over the region, and the results showed three underlying factors including anthropogenic source pollution along with runoff due to rain and soil erosion were responsible for explaining the 93.87% of total variance. The parameters which were significantly influenced by anthropogenic impact are DO, EC, TDS (negative), and concentration of Pb (positive), while the concentration of As, % salinity, and ORP are affected by erosion and runoff due to rain. The worst pollution situation for regions M1 and M6 was due to the concentration of As which was approximately 400 μg/l (i.e., 40 times higher than minimum WHO recommendation). Furthermore, the results also indicated that, in the Indus River, three monitoring stations and five quality parameters are sufficient to have a reasonable confidence about the quality of water in this most important reserve of Pakistan.


2021 ◽  
Vol 918 (1) ◽  
pp. 012036
Author(s):  
M F Fadhilah ◽  
Y Hidayat ◽  
A Hadiyane

Abstract Mahogany trees (Swietenia macrophylla) are often planted in urban forests area. This shady-crowned tree has a role in controlling the quantity and quality of rainwater that falls to the ground. Mahogany trees also affect the quality of rainwater through interception, fall, and stemflow. The purpose of this research was to determine the impact of the interception process, such as throughfall and stemflow, on changes in rainwater quality of the mahogany tree. The Data that needed to be measured were tree dimension, rainfall interception, and rainwater quality. Interception measurement was performed by calculating the number of throughfall and stemflow in one month-measurement. While the measurement of rainwater quality was measured once in the laboratory. These water quality measurements include Electrical Conductivity (EC), hardness, the content of Elements Ca, Mg, Na and K, and pH concentrations. The results based on the total area of the crown showed that mahogany had an interception value of 18.088%. In the throughfall measurement, the mahogany has a throughfall of 81.799%, while the amount of the stemflow is only 0.113%. The correlation of interception values, throughfall, and stemflow with rainfall are in general positively correlated. That means the higher rainfall water will increase the number of interception, throughfall, and stemflow. The results on water quality measurement explain that Ec value in rainwater interception was increased compared to water produced from rainfall in mahogany trees. It also has the same condition in hardness measurement. In pH measurements, the interception of rainwater has less pH when compared to direct rainfall water. In addition, the content of Elements Ca, Mg, K, and Na in Stemflow and Throughfall water have more numbers than rainfall itself.


2021 ◽  
Vol 61 (7) ◽  
pp. 637
Author(s):  
Louise Edwards ◽  
Helen Crabb

Context Water is the first nutrient and an essential component of all agricultural production systems. Despite its importance there has been limited research on water, and in particular, the impact of its availability, management and quality on production systems. Aims This research sought to describe the management and quality of water used within the Australian pig industry. Specifically, the water sources utilised, how water was managed and to evaluate water quality at both the source and the point of delivery to the pig. Methods Fifty-seven commercial piggeries across Australia participated in this study by completing a written survey on water management. In addition, survey participants undertook physical farm parameter measurements including collecting water samples. Each water sample was tested for standard quality parameters including pH, hardness, heavy metals and microbiological status. Key results Responses were received from 57 farms, estimated to represent at least 22% of ‘large’ pig herds. Bore water was the most common water source being utilised within the farms surveyed. Management practices and infrastructure delivering water from the source to the point of consumption were found to differ across the farms surveyed. Furthermore, water was regularly used as a delivery mechanism for soluble additives such as antibiotics. The quality of water at the source and point of consumption was found to be highly variable with many parameters, particularly pH, hardness, salinity, iron, manganese and microbiological levels, exceeding the acceptable standard. Conclusions In general, water quality did not appear to be routinely monitored or managed. As a result, farm managers had poor visibility of the potential negative impacts that inferior water quality or management may be having on pig production and in turn the economics of their business. Indeed, inferior water quality may impact the delivery of antibiotics and in turn undermine the industry’s antimicrobial stewardship efforts. Implications The study findings suggest that water quality represents a significant challenge to the Australian pig industry. Access to drinking water of an acceptable quality is essential for optimal pig performance, health and welfare but also to ensure farm to fork supply chain integrity, traceability and food safety.


Author(s):  
Hasan Eleroğlu ◽  
Arda Yıldırım ◽  
Ahmet Şekeroğlu

The source of water, the content and quality is very important used in every stage of poultry production. The birds must have continuous access and supply of quality water without any antibiotic and bacteriological residues. Sensory, physiochemical properties and chemical composition must be taken into consideration while assessing water quality. The quality of water used in the production of conventional or organic poultry has impacts on the poultry health, quality of products and human health. The impact of water quality is higher on the functionality of water in live organism and the consumption amount varies depending on many factors. A source of water which is used in organic production is also important with their characteristics. Different water sources may be used for animal consumption, such as springs, shallow wells, deep and artesian wells, lakes and creeks. Organic farms should regularly submit water samples to a laboratory for testing of water quality against the possibility of contamination of water sources. Water contaminants could create equipment problems and restrict the amount of water available for consumption therefore affects the quality of products. There are many aspects to the broad problems of water quality and different physical and chemical applications used to ensure sustainability of water quality for human and animal use. In this review, it will be focused on the quality of the water to be used in the organic poultry production and quality enhancing physical and chemical applications.


2018 ◽  
Vol 73 ◽  
pp. 04013
Author(s):  
Deddy Caesar Agusto ◽  
Eko Kusratmoko

The river is the main source of water in Indonesia, which at the moment, this quality tends to get worse and is no longer worth consuming for various needs. The cause of the pollution is the entry of pollutants both point source (industrial waste) and non-point source (residential and agricultural land). Rainfall can be a non-point source pollutant agent from a watershed to a water body. The impact of rainfall on increasing concentrations of pollutants is very significant, especially the high intensity rainfall that falls after the long dry season. In this study, water quality data is obtained from river outlets located in Damkamun taken every 30 minutes during the rainfall event so that fluctuation in water quality can be seen. Water quality indicators studied in this research are TDS, DHLNitrate, Phosphate and Ph. The author, in analyzing, using rainfall Himawari 8 which is obtained every 10 minutes. The result shows that rainfall is directly related to the water flow and the fluctuation of the discharge affects the water quality. From the calculations, the chemical quality of water is also influenced by the use of land in the watershed. Nitrate value increases when the occurrence of rain occurs in land use while phosphate experiences a high value during the event.


2018 ◽  
Vol 19 (1) ◽  
pp. 303-312
Author(s):  
A. Szuster-Janiaczyk ◽  
J. Bylka

Abstract The paper presents a detailed analysis of the quality of water pumped into a network and sampled from 39 monitoring points located on the network. A difference in the quality of water sampled from two different sources was demonstrated, as well as the impact of the mixing of the two waters in the water distribution system (WDS) on tap water quality. A mathematical model was used to identify the zones of water mixing and the areas of unfavourable hydraulic conditions (low flow rates and long retention times).


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 102 ◽  
Author(s):  
Ejaz-ul-Hassan Bhatti ◽  
Mudasser Muneer Khan ◽  
Syyed Adnan Raheel Shah ◽  
Syed Safdar Raza ◽  
Muhammad Shoaib ◽  
...  

Surface water is an important source of water supply for irrigation purpose and in urban areas, sewage water is being disposed of in nearby canals without treatment. A study was conducted to investigate the dynamics of water quality of irrigation canal as a result of this practice. The study ascertained the impact of different salinity parameters, indices and approaches to examine the hazardous effects on quality of canal water. The study analyses the samples collected for various parameters like pH, TDS, EC, Na, Cl, Ca, Mg, K, CO3, HCO3 etc. It helped to decide the restriction on use of water based on FAO-UN guidelines. Investigations were focused on assessment of contaminants affecting the quality of water and having hazardous effects on different stages of irrigation water usage. Wilcox diagram and Doneen’s approach-based analysis helped to identify the class and quality of water. This study shall help to analyze the quality of water and provide support to the decision makers for better water resource management and policy development for irrigation purpose i.e. treatment and distribution of water resource.


Author(s):  
Andrzej Misztal ◽  
Marcin Kuczera

The impact of land use on the water quality of foothill microcatchment areas The impact of land use on the water quality of foothill microcatchment areas. In this paper a comparison is made between the impact of land use methods on the quality of water in the streams which drain various catchment areas. For this purpose three microcatchments were selected which are located in agricultural, rural settlements, and forested areas. Water samples were physically and chemically analysed in order to determine: nitrates, nitrites, ammonia, phosphates, sulphates, chlorides, calcium, magnesium, dissolved oxygen, reaction and conductivity. The above studies were conducted in the 2006 and 2007. Our analysis of the collected materials allows us to affirm that land use methods have a significant impact on the water quality of the streams which drain the area. Rural settlement has the most negative influence on the water quality, followed by typical agricultural use. Based on the direct quality evaluations of single water samples, it has been found that only water from forested areas can be qualified as belonging to the 1st cleanness class.


2013 ◽  
Vol 11 (1) ◽  
pp. 161-172 ◽  
Author(s):  
Meghan Arnold ◽  
James A. VanDerslice ◽  
Brooke Taylor ◽  
Scott Benson ◽  
Sam Allen ◽  
...  

Site-specific information about local water sources is an important part of a community-driven effort to improve environmental conditions. The purpose of this assessment was to gather this information for residents of rural villages in Ghana. Sanitary surveys and bacteriological testing for total coliforms and Escherichia coli (EC) using Colilert® were conducted at nearly 80 water sources serving eight villages. A focus group was carried out to assess the desirability and perceived quality of water sources. Standpipes accounted for almost half of the available water sources; however, a third of them were not functioning at the time of the survey. EC bacteria were found in the majority of shallow wells (80%), rivers (67%), and standpipes (61%), as well as 28% of dug wells. Boreholes were free of EC. Residents felt that the standpipes and boreholes produced safe drinking water. Intermittent service and poor water quality from the piped supply has led to limited access to drinking water. The perception of residents, that the water from standpipes is clean and does not need to be treated at home, is particularly troubling in light of the poor bacteriological quality of water from the standpipes.


Sign in / Sign up

Export Citation Format

Share Document