Influence of Vegetation Coverage on Hydraulic Characteristics of Overland Flow
Soil erosion is a major problem in the Loess Plateau (China); however, it can be alleviated through vegetation restoration. In this study, the overland flow on a slope during soil erosion was experimentally simulated using artificial grass as vegetation cover. Nine degrees of vegetation coverage and seven flow rates were tested in combinations along a 12° slope gradient. As the coverage degree increased, the water depth of the overland flow increased, but the flow velocity decreased. The resistance coefficient increased with increasing degree of coverage, especially after a certain point. The resistance coefficient and the Reynolds number had an inverse relationship. When the Reynolds number was relatively small, the resistance coefficient decreased faster; however, when it exceeded 600, the resistance coefficient decreased at a slower rate. A critical degree of vegetation cover was observed in the relationship between the resistance coefficient and submergence degree. When the degree of coverage was greater than 66.42%, the resistance coefficient first decreased and then increased with a higher submergence degree. Finally, the formula for the resistance coefficient under vegetation coverage was derived. This formula has a relatively high accuracy and can serve as a reference for predicting soil erosion.