scholarly journals Understanding the Mechanical Biases of Tipping-Bucket Rain Gauges: A Semi-Analytical Calibration Approach

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2285
Author(s):  
Daniel A. Segovia-Cardozo ◽  
Leonor Rodríguez-Sinobas ◽  
Andrés Díez-Herrero ◽  
Sergio Zubelzu ◽  
Freddy Canales-Ide

Tipping bucket rain gauges (TBR) are widely used worldwide because they are simple, cheap, and have low-energy consumption. However, their main disadvantage lies in measurement errors, such as those caused by rainfall intensity (RI) variation, which results in data underestimation, especially during extreme rainfall events. This work aims to understand these types of errors, identifying some of their causes through an analysis of water behavior and its effect on the TBR mechanism when RI increases. The mechanical biases of TBR effects on data were studied using 13 years of data measured at 10 TBRs in a mountain basin, and two semi-analytical approaches based on the TBR mechanism response to RI have been proposed, validated in the laboratory, and contrasted with a simple linear regression dynamic calibration and a static calibration through a root-mean-square error analysis in two different TBR models. Two main sources of underestimation were identified: one due to the cumulative surplus during the tipping movement and the other due to the surplus water contributed by the critical drop. Moreover, a random variation, not related to RI, was also observed, and three regions in the calibration curve were identified. Proposed calibration methods have proved to be an efficient alternative for TBR calibration, reducing data error by more than 50% in contrast with traditional static calibration.

2020 ◽  
Author(s):  
Wouter Buytaert ◽  
Jonathan Paul ◽  
Boris Ochoa-Tocachi ◽  

<p>Mountain regions such as the Andes and the Himalayas are a hotspot of natural hazards. Many of them, in particular floods, landslides, and soil degradation, are related to extreme rainfall events. However, characterising rainfall is complicated by the extreme spatiotemporal gradients, and the scarcity of in situ observations. Characterising extreme rainfall events is particularly problematic because most existing rainfall records are only available at a low temporal resolution (daily or coarser). Here, we analyse records of a network of 77 tipping bucket rain gauges located in Ecuador, Peru, Bolivia and Nepal, with a data availability ranging between 1 and 10 years.</p><p>From the raw data we derive rainfall intensities at 5 and 10 minute intervals using composite cubic spline interpolation and smoothing. We then compare those intensities with instantaneous measurements from the Global Precipitation Measurement (GPM) satellite mission. Although correlations are generally low, it is possible to find significant trends that make it possible to interpolate the observed intensities in space, and to generate rainfall intensity quantile maps for the wider high Andean region.</p>


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3308
Author(s):  
Paola Mazzoglio ◽  
Ilaria Butera ◽  
Pierluigi Claps

The collection and management of hydrological data in Italy has been dealt with at national level, initially, by the National Hydrological Service (SIMN), and at regional level in the last 40 years. This change has determined problems in the availability of complete and homogeneous data for the whole country. As of 2020, an updated and quality-controlled dataset of the historical annual maxima rainfall in Italy is still lacking. The Italian Rainfall Extreme Dataset (I-RED) has recently been created to allow studies to be performed with a homogeneous dataset at a national level. In this paper, the methodological approach adopted to build an improved and quality-controlled version of I-RED (in terms of both the rainfall depth values and the position of the rain gauges) is presented. The new database can be used as a more reliable research support for the frequency analysis of the rainfall extremes. This new I2-RED database contains rainfall annual maxima rainfall of 1, 3, 6, 12 and 24 h from 1916 until 2019, counts 5265 rain gauges and has been corroborated by a re-positioning and elevation-checking of 15% of the stations. A descriptive analysis of the maximum values of the stations, which provides an additional quality check and reveals different intriguing spatial features of Super-Extreme rainfall events, is also presented.


2019 ◽  
Vol 20 (9) ◽  
pp. 1829-1850 ◽  
Author(s):  
Raúl A. Valenzuela ◽  
René D. Garreaud

AbstractExtreme rainfall events are thought to be one of the major threats of climate change given an increase of water vapor available in the atmosphere. However, before projecting future changes in extreme rainfall events, it is mandatory to know current patterns. In this study we explore extreme daily rainfall events along central-southern Chile with emphasis in their spatial distribution and concurrent synoptic-scale circulation. Surface rain gauges and reanalysis products from the Climate Forecast System Reanalysis are employed to unravel the dependency between extreme rainfall and horizontal water vapor fluxes. Results indicate that extreme rainfall events can occur everywhere, from the subtropical to extratropical latitudes, but their frequency increases where terrain has higher altitude, especially over the Andes Mountains. The majority of these events concentrate in austral winter, last a single day, and encompass a north–south band of about 200 km in length. Composited synoptic analyses identified extreme rainfall cases dominated by northwesterly (NW) and westerly (W) moisture fluxes. Some features of the NW group include a 300-hPa trough projecting from the extratropics to subtropics, a surface-level depression, and cyclonic winds at 850 hPa along the coast associated with integrated water vapor (IWV) > 30 mm. Conversely, features in the W group include both a very weak 300-hPa trough and surface depression, as well as coastal westerly winds associated with IWV > 30 mm. About half of extreme daily rainfall is associated with an atmospheric river. Extreme rainfall observed in W (NW) cases has a strong orographic (synoptic) forcing. In addition, W cases are, on average, warmer than NW cases, leading to an amplified hydrological response.


2020 ◽  
Vol 43 (4) ◽  
Author(s):  
Angelica Nardo Caseri ◽  
Carlos Frederico Angelis ◽  
Vinícius Banda Sperling ◽  
Etienne Leblois

Extreme rainfall events are one of the natural phenomena that cause more damages. These events are known to be well localized, especially in tropical and subtropical climate regions such as southeastern Brazil. These events have high heterogeneity and the evolution of rain cells changes is quick, the forecast and knowledge of these extreme rainfall events still represent a challenge for the scientific community, such as the spatial variability of rainfall. For this, data from the weather radar installed in Campinas city were used, which generates new radar images every 10 minutes, and data from twenty-nine rain gauges located in the region. For this, 16 rainfall events were selected, located in the region of Campinas/SP, southeast of Brazil, a region that has already recorded many events. For this study, rain and intermittent zones were analyzed separately. This study helps to understand the main statistical characteristics of severe events, mainly located in the region of Campinas. In addition, the information extracted and the analyzes carried out in this study can be used as input data for models that generate possible rainfall scenarios, ensembles, such as, methods based on geostatistics or machine learning.


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


2013 ◽  
Vol 31 (3) ◽  
pp. 413 ◽  
Author(s):  
André Becker Nunes ◽  
Gilson Carlos Da Silva

ABSTRACT. The eastern region of Santa Catarina State (Brazil) has an important history of natural disasters due to extreme rainfall events. Floods and landslides are enhancedby local features such as orography and urbanization: the replacement of natural surface coverage causing more surface runoff and, hence, flooding. Thus, studies of this type of events – which directly influence life in the towns – take on increasing importance. This work makes a quantitative analysis of occurrences of extreme rainfall events in the eastern and northern regions of Santa Catarina State in the last 60 years, through individual analysis, considering the history of floods ineach selected town, as well as an estimate through to the end of century following regional climate modeling. A positive linear trend, in most of the towns studied, was observed in the results, indicating greater frequency of these events in recent decades, and the HadRM3P climate model shows a heterogeneous increase of events for all towns in the period from 2071 to 2100.Keywords: floods, climate modeling, linear trend. RESUMO. A região leste do Estado de Santa Catarina tem um importante histórico de desastres naturais ocasionados por eventos extremos de precipitação. Inundações e deslizamentos de terra são potencializados pelo relevo acidentado e pela urbanização das cidades da região: a vegetação nativa vem sendo removida acarretando um maior escoamento superficial e, consequentemente, em inundações. Desta forma, torna-se de suma importância os estudos acerca deste tipo de evento que influencia diretamente a sociedade em geral. Neste trabalho é realizada uma análise quantitativa do número de eventos severos de precipitação ocorridos nas regiões leste e norte de Santa Catarina dos últimos 60 anos, por meio de uma análise pontual, considerandoo histórico de inundações de cada cidade selecionada, além de uma projeção para o fim do século de acordo com modelagem climática regional. Na análise dos resultados observou-se uma tendência linear positiva na maioria das cidades, indicando uma maior frequência deste tipo de evento nas últimas décadas, e o modelo climático HadRM3P mostra um aumento heterogêneo no número de eventos para todas as cidades no período de 2071 a 2100.Palavras-chave: inundações, modelagem climática, tendência linear.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Arturo Ruiz-Luna ◽  
Claudia Martínez-Peralta ◽  
Patricia P. B. Eichler ◽  
Leonardo R. Teixeira ◽  
Montserrat Acosta-Morel ◽  
...  

2021 ◽  
Author(s):  
Anil Deo ◽  
Savin S. Chand ◽  
Hamish Ramsay ◽  
Neil J. Holbrook ◽  
Simon McGree ◽  
...  

AbstractSouthwest Pacific nations are among some of the worst impacted and most vulnerable globally in terms of tropical cyclone (TC)-induced flooding and accompanying risks. This study objectively quantifies the fractional contribution of TCs to extreme rainfall (hereafter, TC contributions) in the context of climate variability and change. We show that TC contributions to extreme rainfall are substantially enhanced during active phases of the Madden–Julian Oscillation and by El Niño conditions (particularly over the eastern southwest Pacific region); this enhancement is primarily attributed to increased TC activity during these event periods. There are also indications of increasing intensities of TC-induced extreme rainfall events over the past few decades. A key part of this work involves development of sophisticated Bayesian regression models for individual island nations in order to better understand the synergistic relationships between TC-induced extreme rainfall and combinations of various climatic drivers that modulate the relationship. Such models are found to be very useful for not only assessing probabilities of TC- and non-TC induced extreme rainfall events but also evaluating probabilities of extreme rainfall for cases with different underlying climatic conditions. For example, TC-induced extreme rainfall probability over Samoa can vary from ~ 95 to ~ 75% during a La Niña period, if it coincides with an active or inactive phase of the MJO, and can be reduced to ~ 30% during a combination of El Niño period and inactive phase of the MJO. Several other such cases have been assessed for different island nations, providing information that have potentially important implications for planning and preparing for TC risks in vulnerable Pacific Island nations.


Sign in / Sign up

Export Citation Format

Share Document