scholarly journals Aerobic Denitrification Is Enhanced Using Biocathode of SMFC in Low-Organic Matter Wastewater

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3512
Author(s):  
Haochi Zhang ◽  
Dengfeng Hou ◽  
Shuai Zhang ◽  
Xian Cao ◽  
Hui Wang ◽  
...  

Nitrate (NO3−) in wastewater is a rising global threat to ecological and health safety. A sufficient carbon source, as the electron donor, is essential in the conventional biological denitrification process. It is not appropriate to add extra carbon sources into specific water bodies in terms of material cost and secondary pollution. Thus, innovative NO3− removal technologies that are independent of carbon sources, are urgently needed. This study constructed sediment microbial fuel cells (SMFCs) for aerobic denitrification in low-organic matter wastewater and explored the key factors affecting denitrification efficiencies. The SMFC treatments removed 72–91% NO3− through two main denitrifying stages which were driven by carbon sources (COD) and generated electrons, respectively. After COD was fully consumed, denitrification efficiencies were enhanced in SMFC treatments by 24–47% using the generated electrons within 3 days. In this stage, the NO3− removal efficiencies were positively correlated with external current intensities (p < 0.05). The improved denitrification efficiencies were attributed to two enriched phyla in the SMFC cathode. The dominant genera also demonstrated the heterotrophic denitrifying capacity of the SMFC biocathode. Furthermore, electrical characteristics could be used to monitor or regulate the denitrification process in the SMFC system. In conclusion, this study presents an innovative treatment strategy that is economical and eco-friendly compared with conventional physicochemical methods.

2021 ◽  
Vol 9 (11) ◽  
pp. 2350
Author(s):  
Aleksandr Bulaev ◽  
Aleksandra Nechaeva ◽  
Yuliya Elkina ◽  
Vitaliy Melamud

Tank bio-oxidation is a biohydrometallurgical technology widely used for metal recovery from sulfide concentrates. Since carbon availability is one of the key factors affecting microbial communities, it may also determine the rate of sulfide concentrate bio-oxidation. The goal of the present work was to evaluate the effect of carbon sources on the bio-oxidation of the concentrate containing 56% pyrite and 14% arsenopyrite at different temperatures (40 and 50 °C) in stirred tank reactors. CO2 was supplied into the pulp of the first reactor (about 0.01 L/min) and 0.02% (w/v) molasses was added to the pulp of the second one, and no additional carbon sources were used in the control tests. At 40 °C, 77% of pyrite and 98% of arsenopyrite were oxidized in the first reactor, in the second one, 73% of pyrite and 98% of arsenopyrite were oxidized, while in the control reactor, 27% pyrite and 93% arsenopyrite were oxidized. At 50 °C, in the first reactor, 94% of pyrite and 99% of arsenopyrite were oxidized, in the second one, 21% of pyrite and 94% of arsenopyrite were oxidized, while in the control reactor, 10% pyrite and 92% arsenopyrite were oxidized. The analysis of the microbial populations in the reactors revealed differences in the total number of microorganisms and their species composition. Thus, it was shown that the use of various carbon sources made it possible to increase the intensity of the concentrate bio-oxidation, since it affected microbial populations performing the process.


Author(s):  
Elena Evgenevna Mashyanova ◽  
Elena Aleksandrovna Smirnova

In modern conditions of development, financial security is an integral part of the overall security of the region and is formed on the basis of the functioning of the financial system. The complication of relationships between key segments of international financial markets, as well as the limited ability to accurately predict future trends in the development of the global financial system, lead to a gradual increase in the risks that accompany the activities of economic entities, and an increase in the number and scale of internal and external threats that have a negative impact on the financial security of the state. This formulation of the issue requires generalization of approaches to determining the financial security of the region in order to further formalize this issue and determine the key factors affecting it. The article considers the types of financial security, as well as certain areas of ensuring the financial security of the region and their priority. In work the assessment of the level of socio-economic development of the region with a view to ensuring financial security on the basis of which offers the main activities and priority areas of implementation of the investment policy that will ensure financial security of the Republic of Crimea.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 85-92 ◽  
Author(s):  
Ingemar Karlsson ◽  
Gunnar Smith

Chemically coagulated sewage water gives an effluent low in both suspended matter and organics. To use chemical precipitation as the first step in waste water treatment improves nitrification in the following biological stage. The precipitated sludge contains 75% of the organic matter in the sewage and can by hydrolysis be converted to readily degradable organic matter, which presents a valuable carbon source for the denitrification process. This paper will review experiences from full-scale applications as well as pilot-plant and laboratory studies.


2021 ◽  
Vol 10 (5) ◽  
pp. 348
Author(s):  
Zhenbo Du ◽  
Bingbo Gao ◽  
Cong Ou ◽  
Zhenrong Du ◽  
Jianyu Yang ◽  
...  

Black soil is fertile, abundant with organic matter (OM) and is exceptional for farming. The black soil zone in northeast China is the third-largest black soil zone globally and produces a quarter of China’s commodity grain. However, the soil organic matter (SOM) in this zone is declining, and the quality of cultivated land is falling off rapidly due to overexploitation and unsustainable management practices. To help develop an integrated protection strategy for black soil, this study aimed to identify the primary factors contributing to SOM degradation. The geographic detector, which can detect both linear and nonlinear relationships and the interactions based on spatial heterogeneous patterns, was used to quantitatively analyze the natural and anthropogenic factors affecting SOM concentration in northeast China. In descending order, the nine factors affecting SOM are temperature, gross domestic product (GDP), elevation, population, soil type, precipitation, soil erosion, land use, and geomorphology. The influence of all factors is significant, and the interaction of any two factors enhances their impact. The SOM concentration decreases with increased temperature, population, soil erosion, elevation and terrain undulation. SOM rises with increased precipitation, initially decreases with increasing GDP but then increases, and varies by soil type and land use. Conclusions about detailed impacts are presented in this paper. For example, wind erosion has a more significant effect than water erosion, and irrigated land has a lower SOM content than dry land. Based on the study results, protection measures, including conservation tillage, farmland shelterbelts, cross-slope ridges, terraces, and rainfed farming are recommended. The conversion of high-quality farmland to non-farm uses should be prohibited.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yufang Xiang ◽  
Yuanyuan Zheng ◽  
Shaobo Liu ◽  
Gang Liu ◽  
Zhi Li ◽  
...  

AbstractWestern blotting (WB) is one of the most widely used techniques to identify proteins as well as post translational modifications of proteins. The selection of electroblotted membrane is one of the key factors affecting the detection sensitivity of the protein which is transferred from gel to membrane in WB. The most common used membranes are polyvinylidene fluoride (PVDF) and nitrocellulose (NC) membranes. Which membrane of these two is more suitable for WB has not been reported so far. Here, by incubating proteins which were transferred to PVDF or NC membranes with a series of antibodies and different types of lectins, we investigated the relationship between the binding ability of these two membranes to proteins or glycoproteins and the molecular weight of the target protein. The antibody re-probed ability of the two membranes was also explored. Moreover, we verified the above results by directly incubating proteins having different molecular weights onto PVDF or NC membranes. Bound proteins were stained with direct blue-71, and the staining intensity was quantitated by scanning and densitometry.


2021 ◽  
Vol 13 (4) ◽  
pp. 1962
Author(s):  
Timo Liljamo ◽  
Heikki Liimatainen ◽  
Markus Pöllänen ◽  
Riku Viri

Car ownership is one of the key factors affecting travel behaviour and thus also essential in terms of sustainable mobility. This study examines car ownership and how people’s willingness to own a car may change in the future, when considering the effects of public transport, Mobility as a Service (MaaS) and automated vehicles (AVs). Results of two citizen surveys conducted with representative samples (NAV-survey = 2036; NMaaS-survey = 1176) of Finns aged 18–64 are presented. The results show that 39% of respondents would not want or need to own a car if public transport connections were good enough, 58% if the described mobility service was available and 65% if all vehicles in traffic were automated. Hence, car ownership can decrease as a result of the implementation of AVs and MaaS, and higher public transport quality of service. Current mobility behaviour has a strong correlation to car ownership, as respondents who use public transport frequently feel less of a will or need to own a car than others. Generally, women and younger people feel less of a will or need to own a car, but factors such as educational level and residential location seem to have a relatively low effect.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 474
Author(s):  
Huaqiao Liu ◽  
Yiren Pan ◽  
Huiguang Bian ◽  
Chuansheng Wang

In this study, the two key factors affecting the thermal performance of the insert rubber and stress distribution on the tire sidewall were analyzed extensively through various performance tests and simulations to promote the development of run-flat tires. Four compounds and two structures of insert rubber were designed to investigate the effects of heat accumulation and stress distribution on durability testing at zero pressure. It was concluded that the rigidity and tensile strength of the compound were negatively correlated with temperature. The deformation was a key factor that affects energy loss, which could not be judged solely by the loss factor. The stress distribution, however, should be considered in order to avoid early damage of the tire caused by stress concentration. On the whole, the careful balance of mechanical strength, energy loss, and structural rigidity was the key to the optimal development of run-flat tires. More importantly, the successful implementation of the simulations in the study provided important and useful guidance for run-flat tire development.


Sign in / Sign up

Export Citation Format

Share Document