scholarly journals Effect of Radio-Frequency Treatment on the Changes of Dissolved Organic Matter in Rainwater

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 111
Author(s):  
Ariadi Hazmi ◽  
Maulana Yusup Rosadi ◽  
Reni Desmiarti ◽  
Fusheng Li

Rainwater is a potential source of drinking water, but has various components of dissolved organic matter (DOM). DOM is a reservoir of potential hazards in drinking water. Therefore, a new method is required to purify rainwater as a drinking water source in terms of DOM aspects. A radio-frequency (RF) treatment system is introduced here to purify source water with a small possibility of contamination. RF is generated by applying a frequency of 1.5 MHz through a glass reactor with a diameter of 2 mm which is wrapped by a 2 mm copper wire. The results demonstrate that UV260 value and dissolved organic carbon (DOC) are reduced during RF treatment. DOC was reduced by a lower amount compared to UV260, suggesting the partial transformation of bio-refractory DOM. A fluorescence excitation-emission matrix showed that humic-like substances in rainwater were reduced faster than protein-like ones, indicating that humic-like substances are susceptible to reduction by RF treatment. The results offer information on the use of RF treatment in a rainwater purification process for the production of drinking water.

2020 ◽  
Author(s):  
John Weatherill ◽  
Elena Fernandez-Pascual ◽  
Jean O'Dwyer ◽  
Elizabeth Gilchrist ◽  
Simon Harrison ◽  
...  

<p>Ireland has a far greater number of regulatory exceedances for trihalomethanes (THMs) in public water supplies than the next highest European Union member state. In Ireland, 82% of public water supplies originate from surface water catchments which require disinfection to inactivate pathogens and prevent the spread of waterborne diseases. Since the 1970s, it has been known that the use of chlorine for disinfection leads to the formation of potentially harmful disinfection byproducts (DBPs) of which some are suspected carcinogens. THMs are one prominent class of at least 700 potentially harmful disinfection byproducts (DBPs) produced after chlorination of dissolved organic matter (DOM) present in source water which is not removed prior to disinfection.</p><p>We introduce a new research project, funded by the Irish Environmental Protection Agency entitled PRODOM: PRoactive Optical monitoring of catchment Dissolved Organic Matter for drinking water source protection. The overall aim of the research is to develop an integrated catchment-level understanding of the spatiotemporal dynamics of DOM precursors and associated DBP formation risk. The project will explore the relationship between optically-active DOM precursors and laboratory formation potentials for key DBPs including emerging classes of potentially more harmful nitrogenous DBPs. Through high-resolution spatial sampling we will develop geospatial DBP formation risk maps and identify risk-driving point and diffuse precursor sources. We will evaluate the potential of state-of-the-art UV fluorescence sensor technology to act as an early warning tool for proactive management of source water at sub-catchment scale. Using high-frequency time series monitoring of fluorescent precursors, we will identify high-risk periods in the catchment hydrograph and evaluate critical precursor sources and pathways to inform a series of catchment management measures designed to reduce DBP formation risk. </p>


2016 ◽  
Vol 551-552 ◽  
pp. 133-142 ◽  
Author(s):  
Hong-Ying Hu ◽  
Ye Du ◽  
Qian-Yuan Wu ◽  
Xin Zhao ◽  
Xin Tang ◽  
...  

2016 ◽  
Vol 283 ◽  
pp. 330-337 ◽  
Author(s):  
Abdullah Ogutverici ◽  
Levent Yilmaz ◽  
Ulku Yetis ◽  
Filiz B. Dilek

1998 ◽  
Vol 37 (2) ◽  
pp. 49-55 ◽  
Author(s):  
Jeanine D. Plummer ◽  
James K. Edzwald

The presence of algae in a drinking water source can have a significant impact on the treatment of that water. Algae and their extracellular organic matter can be precursors for disinfection by-product (DBP) formation which is of concern for treatment plants that employ pre-chlorination. This research examined the DBP formation of suspensions of Scenedesmus quadricauda, a green alga, and the effect of ozonation on that formation. Trihalomethane formation potential (THMFP) was found to increase by 10% to 30% when preozonation was applied versus non-ozonated samples. A slight increase in haloacetic acid (HAA) formation was also observed in the ozonated samples. Ozonation caused an increase in the dissolved organic carbon content of the algal suspension, thereby increasing the concentration of precursors. The alkalinity of the water did not significantly affect the formation potential of either THMs or HAAs.


2012 ◽  
Vol 46 (16) ◽  
pp. 5343-5354 ◽  
Author(s):  
Jonathan G. Pressman ◽  
Daniel L. McCurry ◽  
Shahid Parvez ◽  
Glenn E. Rice ◽  
Linda K. Teuschler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document