scholarly journals Design and Numerical Analysis of Electric Vehicle Li-Ion Battery Protections Using Lattice Structure Undergoing Ground Impact

2021 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Leonardus Kenny Pratama ◽  
Sigit Puji Santosa ◽  
Tatacipta Dirgantara ◽  
Djarot Widagdo

Improvement in electric vehicle technology requires the lithium-ion battery system’s safe operations, protecting battery fire damage potential from road debris impact. In this research a design of sandwich panel construction with a lattice structure core is evaluated as the battery protection system. Additive manufacturing technology advancements have paved the way for lattice structure development. The sandwich protective structure designs are evaluated computationally using a non-linear dynamic finite element analysis for various geometry and material parameters. The lattice structure’s optimum shape was obtained based on the highest Specific Energy Absorption (SEA) parameter developed using the ANOVA and Taguchi robust design method. It is found that the octet-cross lattice structure with 40% relative density provided the best performance in terms of absorbing impact energy. Furthermore, the sandwich panel construction with two layers of lattice structure core performed very well in protecting the lithium-ion NCA battery in the ground impact loading conditions, which the impactor velocity is 42 m/s, representing vehicle velocity in highway, and weigh 0.77 kg. The battery shortening met the safety threshold of less than 3 mm deformation.

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7618
Author(s):  
Alvian Iqbal Hanif Nasrullah ◽  
Sigit Puji Santosa ◽  
Djarot Widagdo ◽  
Faizal Arifurrahman

A critical external interference that often appears to pose a safety issue in rechargeable energy storage systems (RESS) for electric vehicles (EV) is ground impact due to stone impingement. This study aims to propose the new concept of the sandwich for structural battery protection using a lattice structure configuration for electric vehicle applications. The protective geometry consists of two layers of a twisted-octet lattice structure. The appropriate lattice structure was selected through topology and material optimization using an artificial neural network (ANN), genetic algorithms (GA), and multi-objective optimization with technique for order of preference by similarity to ideal solution (TOPSIS) methods. The optimization variables are the lattice structure relative density, ρ¯, angle, θ, and strength of the materials, σy. Numerical simulations were used to model the dynamic impact loading on the structures due to a conical stone mass of 0.77 kg traveling at 162 km/h. The two-layer lattice structure configuration appears to be suitable for the purposes of RESS protection. The optimum configuration for battery protection is a lattice structure with an angle of 66°, relative density of 0.8, and yield strength of 41 MPa. This optimum configuration can satisfy the safety threshold of battery-shortening deformation. Therefore, the proposed lattice structure configuration can potentially be implemented for electric vehicle applications to protect the battery from ground impact.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Jiangqi Long ◽  
Wenhao Huang ◽  
Wuhu Zhang

The total weight of Extended-Range Electric Vehicle (E-REV) is too heavy, which affects rear-end collision safety. Using numerical simulation, a lightweight method is designed to reduce E-REV body and key parts weight based on rear-end collision failure analysis. To calculate and optimize the performance of vehicle safety, the simulation model of E-REV rear-end collision safety is built by using finite element analysis. Drive battery pack lightweight design method is analyzed and the bending mode and torsional mode of E-REV before and after lightweight are compared to evaluate E-REV rear-end collision safety performance. The simulation results of optimized E-REV safety structure are verified by both numerical simulation and experimental investigation of the entire vehicle crash test.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shijun Chen ◽  
Qi Zhang ◽  
Surong Huang

To more efficiently design high performance vehicular permanent magnet motor, an electromagnetic-thermal integration design method is presented, which considers both the electromagnetic properties and the temperature rise of motor winding when determining the main dimensional parameters of the motor. Then a 48-slot and 8-pole vehicular permanent magnet motor is designed with this method. The thermomagnetic coupling design is simulated and validated on the basis of multiphysical domain on finite element analysis. Then the prototype is analyzed and tested on a newly built motor experiment platform. It is shown that the simulation results and experimental results are consistent, which validate the accuracy and effectiveness of the new design method. Also this method is proved to well improve the efficiency of permanent magnet motor design.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2017 ◽  
Vol 53 (3) ◽  
pp. 2541-2549 ◽  
Author(s):  
Mohammad Abdul Hannan ◽  
Md. Murshadul Hoque ◽  
Seow Eng Peng ◽  
M. Nasir Uddin

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4585
Author(s):  
Marian Bulla ◽  
Stefan Kolling ◽  
Elham Sahraei

The present study is focused on the development of a material model where the orthotropic-visco-elastic and orthotropic-visco-plastic mechanical behavior of a polymeric material is considered. The increasing need to reduce the climate-damaging exhaust gases in the automotive industry leads to an increasing usage of electric powered drive systems using Lithium-ion (Li-ion) batteries. For the safety and crashworthiness investigations, a deeper understanding of the mechanical behavior under high and dynamic loads is needed. In order to prevent internal short circuits and thermal runaways within a Li-ion battery, the separator plays a crucial role. Based on results of material tests, a novel material model for finite element analysis (FEA) is developed using the explicit solver Altair Radioss. Based on this model, the visco-elastic-orthotropic, as well as the visco-plastic-orthotropic, behavior until failure can be modeled. Finally, a FE simulation model of the separator material is performed, using the results of different tensile tests conducted at three different velocities, 0.1 mm·s−1, 1.0 mm·s−1 and 10.0 mm·s−1 and different orientations of the specimen. The purpose is to predict the anisotropic, rate-dependent stiffness behavior of separator materials in order to improve FE simulations of the mechanical behavior of batteries and therefore reduce the development time of electrically powered vehicles and consumer goods. The present novel material model in combination with a well-suited failure criterion, which considers the different states of stress and anisotropic-visco-dependent failure limits, can be applied for crashworthiness FE analysis. The model succeeded in predicting anisotropic, visco-elastic orthotropic and visco-plastic orthotropic stiffness behavior up to failure.


Sign in / Sign up

Export Citation Format

Share Document