scholarly journals Electric Vehicle Modelling and Simulation of a Light Commercial Vehicle Using PMSM Propulsion

2021 ◽  
Vol 49 (1) ◽  
pp. 37-46
Author(s):  
Aminu Babangida ◽  
Péter Tamás Szemes

Even though the Internal Combustion Engine (ICE) used in conventional vehicles is one of the major causes of global warming and air pollution, the emission of toxic gases is also harmful to living organisms. Electric propulsion has been developed in modern electric vehicles to replace the ICE.The aim of this research is to use both the Simulink and Simscape toolboxes in MATLAB to model the dynamics of a light commercial vehicle powered by electric propulsion. This research focuses on a Volkswagen Crafter with a diesel propulsion engine manufactured in 2020. A rear-wheel driven electric powertrain based on a Permanent Magnet Synchronous Motor was designed to replace its front-wheel driven diesel engine in an urban environment at low average speeds.In this research, a Nissan Leaf battery with a nominal voltage of 360 V and a capacity of 24 kWh was modelled to serve as the energy source of the electric drivetrain. The New European Driving Cycle was used in this research to evaluate the electric propulsion. Another test input such as a speed ramp was also used to test the vehicle under different road conditions. A Proportional Integral controller was applied to control the speed of both the vehicle and synchronous motor. Different driving cycles were used to test the vehicle. The vehicle demonstrated a good tracking capability in each type of test. In addition, this research determined that the fuel economy of electric vehicles is approximately 19% better than that of conventional vehicles.

2020 ◽  
Vol 10 (24) ◽  
pp. 8785
Author(s):  
Hojin Jeong ◽  
Jeihoon Baek

Air conditioning system of electric vehicles has new change as the internal combustion engine is being replaced with electrified AC motor. With large amount of batteries installed at the bottom of frame, the conventional compressor, which is belt-driven, can be removed, and another AC motor can play the role for air conditioning in electric vehicles. From this change, the system efficiency would be improved since it is possible to control the electrified compressor independently from traction system in contrast with the belt-driven compressor. As a result, by applying the electrified compressor for air conditioning system, the whole system can achieve better efficiency and longer driving distance, which is most important in electric vehicles. In this paper, 3-phase interior permanent magnet synchronous motor (IPMSM) was designed using lumped-parameter model and finite element method.


Author(s):  
Hojin Jeong ◽  
Namhun Kim ◽  
Jeihoon Baek

Air conditioning system of electric vehicles has new change as the internal combustion engine is being replaced with electrified AC motor. With large amount of batteries installed at the bottom of frame, the conventional compressor which is belt-driven can be removed and another AC motor can play the role for air conditioning in electric vehicles. From this change, the system efficiency would be improved since it is possible to control the electrified compressor independently from traction system in contrast with the belt-driven compressor. As a result, by applying the electrified compressor for air conditioning system, the whole system can achieve better efficiency and longer driving distance, which is most important in electric vehicles. In this paper, 3-phase interior permanent magnet synchronous motor (IPMSM) was designed using lumped-parameter model and finite element method.


2021 ◽  
Vol 39 (3A) ◽  
pp. 394-406
Author(s):  
Mustafa Y. Bdewi ◽  
Ahmed M. Mohammed ◽  
Mohammed M. Ezzaldean

In electrical vehicle applications, power density plays a significant role in improving machine performance. The main objective of this paper is to design and analyze the performance of in-wheel outer rotor permanent magnet synchronous motor (PMSM) used in electric vehicles based on a previously designed model. The key challenge is to achieve the best machine performance regarding the highest torque density and lowest torque ripple. This work also aims at reducing the machine cost by using permanent magnet (PM) material, which has less energy density than the PM used in the previously designed model. An optimization procedure is carried out to improve the generated torque, keeping the same aspects of size and volume of the selected machine. On the other hand, the other specifications of the machine are taken into consideration and are maintained within the acceptable level. According to their major impact on the machine’s performance, the most important parameters of machine designing is selected during the optimization procedure. This proposed machine is implemented and tested using the finite element software package “MagNet 7.4.1” with Visual Basic 16.0 programming language and MATLAB 9.5 Simulink for post-processing.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401770435 ◽  
Author(s):  
Bin Liu ◽  
Yue Zhao ◽  
Hui-Zhong Hu

A kind of flux-weakening control method based on speed loop structure-variable sliding mode controller is proposed for interior permanent magnet synchronous motor in electric vehicles. The method combines maximum torque per ampere with vector control strategy to control electric vehicle’s interior permanent magnet synchronous motor. During the flux-weakening control phase, the anti-windup integral controller is introduced into the current loop to prevent the current regulator from entering the saturated state. At the same time, in order to further improve the utilization rate of the direct current bus voltage and expand the flux-weakening regulating range, a space vector pulse-width modulation over-modulation unit is employed to contravariant the direct current bus voltage. Comparing with the conventional proportional–integral controller, the proposed sliding mode control algorithm shows that it has more reliable control performance. In addition, more prominent flux-weakening performance of the proposed flux-weakening method is illustrated by numerical simulation comparison.


2019 ◽  
Vol 13 (10) ◽  
pp. 1613-1621
Author(s):  
Conggan Ma ◽  
Yuansheng An ◽  
Lantao Liu ◽  
Michele Degano ◽  
Xingjiang Ning ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 276 ◽  
Author(s):  
Hongfen Bai

To improve the operating performance of electric propulsion ships, the permanent magnet synchronous motor is commonly used as the propulsion motor. Additionally, position estimation without sensors can further improve the application range of the propulsion motor and the estimated results can represent the redundancy of measured values from mechanical sensors. In this paper, the high-frequency (HF) injection algorithm combined with the second-order generalized integrator (SOGI) is presented on the basis of analyzing the structure of the electric propulsion ship and the vector control of the motors. The position and rotor speed were estimated accurately by the approximate calculation of q-axis currents directly related to the rotor position. Moreover, the harmonics in the estimated position were effectively reduced by the introduction of the second-order generalized integrator. Then, the rotor position estimation algorithm was verified in MATLAB/Simulink by choosing different low speeds including speed reversal, increasing speed, and increasing load torque. Finally, the correctness of the proposed improved high-frequency injection algorithm based on the second-order generalized integrator was verified by the experimental propulsion permanent magnet synchronous motor (PMSM) system at low speed.


Sign in / Sign up

Export Citation Format

Share Document