Effect of different magnets and iron-platelets on the low frequency performance of membrane sound absorber

2021 ◽  
Vol 263 (6) ◽  
pp. 342-347
Author(s):  
Junjuan Zhao ◽  
Liying Zhu ◽  
Xinyun Li ◽  
Yueyue Wang ◽  
Wenjiang Wang ◽  
...  

To achieve a compact design for low frequency tunable sound absorption, a membrane sound absorber (MSA) with nonlinear magnetic field is proposed in this paper. By employing a central iron platelet on the membrane, the MSA can be easily tuned by introducing a magnet at a distance from the platelet that can be adjusted. To investigate the low frequency properties of MSA with different magnets and iron-platelets, a series of impedance tube experiments are conducted in detail. The sample absorber has a rear cavity depth of 30 mm, three different magnets were used inside, tested results real that using a strong magnetic field can help broaden the frequency tuning range. Then, results from the MSA with five different sizes of iron plates tuned by one magnet show that the low-frequency tuning range moves to lower with the increase of the area of iron plates.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Longhan Xie ◽  
Ruxu Du

This paper investigates a frequency-tunable nonlinear electromagnetic energy harvester. The electromagnetic harvester mainly consists of permanent magnets supported on the base to provide a magnetic field, and electrical coils suspended by four even-distributed elastic strings to be an oscillating object. When the base provides external excitation, the electrical coils oscillate in the magnetic field to produce electricity. The stretch length of the elastic strings can be tuned to change their stretch ratio by tuning adjustable screws, which can result in a shift of natural frequency of the harvester system. The transverse force of the elastic strings has nonlinear behavior, which broadens the system's frequency response to improve the performance of the energy harvester. Both simulation and experiment show that the above-discussed electromagnetic energy harvester has nonlinear behavior and frequency-tunable ability, which can be used to improve the effectiveness of energy harvesting.


2021 ◽  
Vol 263 (6) ◽  
pp. 648-652
Author(s):  
Tuo Xing ◽  
Xianhui Li ◽  
Xiaoling Gai ◽  
Zenong Cai ◽  
Xiwen Guan

The monostable acoustic metamaterial is realized by placing a flexible panel with a magnetic proof mass in a symmetric magnetic field. The theoretical model of monostable metamaterials has been proposed. The method of finite element simulation is used to verify the theoretical model. The magnetic force of the symmetrical magnetic field is simplified as the relationship between force and displacement, acting on the mass. The simulation results show that as the external magnetic force increases, the peak sound absorption shifts to low frequencies. The theoretical and finite element simulation results are in good agreement.


2019 ◽  
Vol 9 (7) ◽  
pp. 1507 ◽  
Author(s):  
Xinmin Shen ◽  
Panfeng Bai ◽  
Xiaocui Yang ◽  
Xiaonan Zhang ◽  
Sandy To

The combination structure of a porous metal and microperforated panel was optimized to develop a low frequency sound absorber. Theoretical models were constructed by the transfer matrix method based on the Johnson—Champoux—Allard model and Maa’s theory. Parameter optimizations of the sound absorbers were conducted by Cuckoo search algorithm. The sound absorption coefficients of the combination structures were verified by finite element simulation and validated by standing wave tube measurement. The experimental data was consistent with the theoretical and simulation data, which proved the efficiency, reliability, and accuracy of the constructed theoretical sound absorption model and finite element model. The actual average sound absorption coefficient of the microperforated panel + cavity + porous metal + cavity sound absorber in the 100–1800 Hz range reached 62.9615% and 73.5923%, respectively, when the limited total thickness was 30 mm and 50 mm. The excellent low frequency sound absorbers obtained can be used in the fields of acoustic environmental protection and industrial noise reduction.


2020 ◽  
Vol 15 ◽  
pp. 155892502091086
Author(s):  
Lihua Lyu ◽  
Jing Lu ◽  
Jing Guo ◽  
Yongfang Qian ◽  
Hong Li ◽  
...  

In order to find a reasonable way to use the waste corn husk, waste degummed corn husk fibers were used as reinforcing material in one type of composite material. And polylactic acid particles were used as matrix material. The composite materials were prepared by mixing and hot-pressing process, and they were processed into the micro-slit panel. Then, the multi-layer structural sound absorption composite materials were prepared sequentially by micro-slit panel, air cavity, and flax felt. Finally, the sound absorption properties of the multi-layer structural composite materials were studied by changing flax felt thickness, air cavity depth, slit rate, and thickness of micro-slit panel. As the flax felt thickness varied from 0 to 10 mm in 5 mm increments, the peak of sound absorption coefficient shifted to low frequency. The sound absorption coefficient in the low frequency was improved with the air cavity depth varied from 0 to 10 mm in 5 mm increments. With the slit rate increased from 3% to 7% in 2% increments, the peak of sound absorption coefficient shifted to high frequency. With the thickness of micro-slit panel increased from 2 to 6 mm in 2 mm increments, the sound absorption bandwidth was broaden, and the peak of sound absorption coefficient was increased and shifted to low frequency. Results showed that the highest sound absorption coefficient of the multi-layer structural composite materials was about 1 under the optimal process conditions.


2013 ◽  
Vol 468 ◽  
pp. 134-140 ◽  
Author(s):  
Xia Zhang ◽  
Shu Ning Duan ◽  
Mei Gen Cao ◽  
Juan Mo ◽  
Yu Han Sun ◽  
...  

In allusion to the characteristic that transformer noise is mainly low-frequency noise, firstly the sound absorber is studied and analyzed on aspect of materials, sound absorption structure cavity thickness and punching rate etc in standing wave tube laboratory, secondly transformer substation low-frequency sound absorber is presented, and finally sound absorption properties of absorber is verified through random incidence Test. The analyses and study indicates that: compared with thin plate resonance absorber and micropunching sound absorber, the sound absorption band width of transformer substation low-frequency sound absorber has been improved under unchanged sound absorption effect and transformer low-frequency noise may be effectively absorbed.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 526
Author(s):  
Xiaotong Guan ◽  
Jiayi Zhang ◽  
Wenjie Fu ◽  
Dun Lu ◽  
Tongbin Yang ◽  
...  

Motivated by some emerging high-frequency applications, a high-power frequency-tunable sub-THz quasi-optical gyrotron cavity based on a confocal waveguide is designed in this paper. The frequency tuning characteristics of different approaches, including magnetic field tuning, mirror separation adjustment, and hybrid tuning, have been investigated by particle-in-cell (PIC) simulation. Results predict that it is possible to realize a smooth continuous frequency tuning band with an extraordinarily broad bandwidth of 41.55 GHz, corresponding to a relative bandwidth of 18.7% to the center frequency of 0.22 THz. The frequency tunability is provided by varying the separation distance between two mirrors and correspondingly adjusting the external magnetic field. During the frequency tuning, the output power remains higher than 20 kW, which corresponds to an interaction efficiency of 10%. Providing great advantages in terms of broad bandwidth, smooth tuning, and high power, this research may be conducive to the development of high-power frequency-tunable THz gyrotron oscillators.


2013 ◽  
Vol 325-326 ◽  
pp. 8-11
Author(s):  
Wei Guang Zheng ◽  
Ying Feng Lei ◽  
Qi Bai Huang ◽  
Chuan Bing Li

This paper presents the concept of a compact hybrid sound absorber, based on a combined approach for sound absorption. A flexible micro-perforated panel (MPP) is used as the passive sound absorber for mid and high frequencies and a piezoelectric patch as the active control actuator for low frequency. The volume of this new absorber is highly reduced compare to conventional hybrid systems which employ porous layer as passive part and loudspeaker as active part. The vibration effect of the MPP in the hybrid system is also considered. Theoretical and experimental results show that the flexible MPP has the potential to dissipate more energy and can be utilized to improve absorption performance of the hybrid system by appropriately selecting its parameters.


2015 ◽  
Vol 773-774 ◽  
pp. 210-215
Author(s):  
Muhd Hafeez Zainulabidin ◽  
M.H.M. Yusuff ◽  
Al Emran Ismail ◽  
M.Z. Kasron ◽  
A.S.M. Kassim

This paper describes the investigation and analysis on two materials in which one material is a relatively good sound absorber at low frequency range and another is a relatively good sound absorber at high frequency range, combined together in layers to form a better sound absorber for a wider range of frequencies. The layer combinations of the materials are varied and the values of Sound Absorption Coefficient, α are measured experimentally by using impedance tubes with two microphones transfer function method according to ISO 10534-2 standard. The results obtained are compared in terms of the order of material and the number of layer combinations of materials for each sample. The orders of combinations and number of layers of combinations have significant influence on the sound absorption characteristics. The order of materials has reversed effect on Sound Absorption Coefficient, α as the number of layer combination is increased. Increase in the combination number will make the specimen performed relatively better at a wider frequency range.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 401
Author(s):  
Shaojun Fang ◽  
Xiaojian Guo ◽  
Hongmei Liu ◽  
Zhongbao Wang

In this paper, a frequency tunable planar balun composed of varactors loaded coupled lines (VL-CLs) is presented. By tuning the capacitances of the varactors, a wide frequency tuning range is obtained. Moreover, good impedance match, balanced output ports amplitude, and consistent output ports phase difference (PD) are maintained during the tuning. A detailed theoretical analysis using the signal flow diagram and the even-odd mode method is presented to clarify the characteristics of the proposed balun. To achieve ideal output matching and isolation for the proposed balun, a novel frequency tuned isolation circuit (IsC) is designed and connected to the balun. In theory, a frequency tuning range of 200% can be realized. In practice, due to the limited capacitances of the varactors, a prototype with a tunable frequency of 1.0 GHz ~ 2.0 GHz (66.7%) is designed, fabricated, and measured. The measured results show that more than21 dB of return loss (RL), 180° ± 1.8° of phase difference, 0.43 dB of amplitude imbalance (AP), and 22 dB of isolation are obtained at all tuning center frequencies, agreeing well with the simulated results.


Author(s):  
Ho-Kyeong Jeong ◽  
Juho Lee ◽  
Jae-Hung Han

A Shock and vibration isolator is widely used due to its simplicity and effectiveness. It attenuates vibration energy when the external excitation frequency is more than about 2 times its natural frequency, while the vibration around its natural frequency is generally amplified. However, an exciting frequency often varies so that it is difficult to avoid the vibration amplification. In particular, when these amplification phenomena occur in the low frequency domain, induced large vibration displacements degrade the structural integrity. This paper introduces a novel frequency tunable isolator proposed by the present authors. The isolator uses SMA wires as actuator as well as the isolation materials. The isolator material is a compressed mesh washer isolator using the pseudoelasticity of SMA. Frequency tune of the isolator can be easily achieved through a simple electric circuit. Thus, this isolator can be widely applied to various vibration and shock environments such as in aircrafts and motor vehicles. Particularly, the detail design procedure is presented here for the adaptive shock isolator for launch vehicle in order to achieve both shock attenuation performance and avoidance of the vibration amplification. Launch vehicles experience severe dynamic environment during the flight phase. Specially, pyroshock generated from the several separation events could result in malfunctions of electric components and low frequency vibration below 100 Hz at the maximum dynamic pressure phase could reduce the structural integrity of payload. The resonant frequency of the isolator is selectively controlled in two modes by using an adaptive mechanical system with compressing the isolation materials. The isolator was successfully designed and various test results with frequency tuning are presented, in this paper.


Sign in / Sign up

Export Citation Format

Share Document