INTER-NOISE and NOISE-CON Congress and Conference Proceedings
Latest Publications


TOTAL DOCUMENTS

636
(FIVE YEARS 636)

H-INDEX

0
(FIVE YEARS 0)

Published By Institute Of Noise Control Engineering (INCE)

0736-2935

2021 ◽  
Vol 263 (1) ◽  
pp. 5301-5309
Author(s):  
Luca Alimonti ◽  
Abderrazak Mejdi ◽  
Andrea Parrinello

Statistical Energy Analysis (SEA) often relies on simplified analytical models to compute the parameters required to build the power balance equations of a coupled vibro-acoustic system. However, the vibro-acoustic of modern structural components, such as thick sandwich composites, ribbed panels, isogrids and metamaterials, is often too complex to be amenable to analytical developments without introducing further approximations. To overcome this limitation, a more general numerical approach is considered. It was shown in previous publications that, under the assumption that the structure is made of repetitions of a representative unit cell, a detailed Finite Element (FE) model of the unit cell can be used within a general and accurate numerical SEA framework. In this work, such framework is extended to account for structural-acoustic coupling. Resonant as well as non-resonant acoustic and structural paths are formulated. The effect of any acoustic treatment applied to coupling areas is considered by means of a Generalized Transfer Matrix (TM) approach. Moreover, the formulation employs a definition of pressure loads based on the wavenumber-frequency spectrum, hence allowing for general sources to be fully represented without simplifications. Validations cases are presented to show the effectiveness and generality of the approach.


2021 ◽  
Vol 263 (1) ◽  
pp. 5815-5827
Author(s):  
Sean Doyle ◽  
Donald Scata ◽  
James Hileman

As part of the agency's broader noise research program, the Federal Aviation Administration (FAA) has undertaken a multi-year research effort to quantify the impacts of aircraft noise exposure on communities around commercial service airports in the United States (U.S.). The overall goal of the study was to produce an updated and nationally representative civil aircraft dose-response curve; providing the relationship between annoyance and aircraft noise exposure around U.S. airport communities. To meet this goal, the FAA sponsored a research team to help design and conduct a national survey, known as the Neighborhood Environmental Survey (NES). By assessing the results of the NES through both internal review and input from public comment, the FAA seeks to better inform its noise research priorities and noise policies. This paper will outline the FAA's motivation to conduct the NES as well as how its findings will help inform ongoing work to address aircraft noise concerns. Additional information describing the noise methodology and survey methodology are provided in companion papers.


2021 ◽  
Vol 263 (6) ◽  
pp. 206-214
Author(s):  
David Montes-González ◽  
Juan Miguel Barrigón-Morillas ◽  
Ana Cristina Bejarano-Quintas ◽  
Manuel Parejo-Pizarro ◽  
Guillermo Rey-Gozalo ◽  
...  

The pandemic of coronavirus disease (COVID-19) led to the need for drastic control measures around the world to reduce the impact on the health of the population. The confinement of people in their homes resulted in a significant reduction in human activity at every level (economic, social, industrial, etc.), which was reflected in a decrease in environmental pollution levels. Studying the evolution of parameters, such as the level of environmental noise caused by vehicle traffic in urban environments, makes it possible to assess the impact of this type of measure. This paper presents a case study of the acoustic situation in Cáceres (Spain) during the restriction period by means of long-term acoustic measurements at various points of the city.


2021 ◽  
Vol 263 (6) ◽  
pp. 965-969
Author(s):  
Tyrode Victor ◽  
Nicolas Totaro ◽  
Laurent Maxit ◽  
Alain Le Bot

In Statistical Energy Analysis (SEA) and more generally in all statistical theories of sound and vibration, the establishment of diffuse field in subsystems is one of the most important assumption. Diffuse field is a special state of vibration for which the vibrational energy is homogeneously and isotropically distributed. For subsystems excited with a random white noise, the vibration tends to become diffuse when the number of modes is large and the damping sufficiently light. However even under these conditions, the so-called coherent backscattering enhancement (CBE) observed for certain symmetric subsystems may impede diffusivity. In this study, CBE is observed numerically and experimentally for various geometries of subsystem. Also, it is shown that asymmetric boundary conditions leads to reduce or even vanish the CBE. Theoretical and numerical simulations with the ray tracing method are provided to support the discussion.


2021 ◽  
Vol 263 (6) ◽  
pp. 486-492
Author(s):  
Shuang Yang ◽  
Xiangyang Zeng

Underwater acoustic target recognition is an important part of underwater acoustic signal processing and an important technical support for underwater acoustic information acquisition and underwater acoustic information confrontation. Taking into account that the gated recurrent unit (GRU) has an internal feedback mechanism that can reflect the temporal correlation of underwater acoustic target features, a model with gated recurrent unit and Network in Network (NIN) is proposed to recognize underwater acoustic targets in this paper. The proposed model introduces NIN to compress the hidden states of GRU while retaining the original timing characteristics of underwater acoustic target features. The higher recognition rate and faster calculation speed of the proposed model are demonstrated with experiments for raw underwater acoustic signals comparing with the multi-layer stacked GRU model.


2021 ◽  
Vol 263 (6) ◽  
pp. 894-906
Author(s):  
Yannik Weber ◽  
Matthias Behrendt ◽  
Tobias Gohlke ◽  
Albert Albers

Preliminary work by the IPEK - Institute of Product Engineering at KIT has shown that the simulated pass-by measurement for exterior noise homologation of vehicles has relevant optimization potential: the measurement can be carried out in smaller halls and with a smaller measurement setup than required by the norm and thus with less construction cost and effort. A prerequisite for this however is the scaling of the entire setup. For the scaling in turn, the sound sources of the vehicle must be combined to a single point sound source - the acoustic centre. Previous approaches for conventional drives assume a static centre in the front part of the vehicle. For complex drive topologies, e.g. hybrid drives, and unsteady driving conditions, however, this assumption is not valid anymore. Therefore, with the help of an acoustic camera, a method for localizing the dominant sound sources of the vehicle and a software-based application for summarizing them to an acoustic centre were developed. The method is able to take into account stationary, unsteady and sudden events in the calculation of the acoustic centre, which is moved as a result. Using substitute sound sources and two vehicles, the method and the used measurement technology were examined and verified for their applicability.


2021 ◽  
Vol 263 (2) ◽  
pp. 4526-4531
Author(s):  
Kun Qian ◽  
Zhichao Hou ◽  
Ruixue Liu ◽  
Dengke Sun ◽  
Rongkang Luo

With the increasing demand of users for the acoustical comfort of commercial vehicles, the sound quality has become one of the important indicators of comfort evaluation. The research focuses on the objective evaluation method of the subjective perception of the sound quality in commercial vehicle. The interior noises of commercial vehicle with an inline six diesel engine are measured. The five psychoacoustic parameters (loudness, roughness, sharpness, fluctuation strength, tonality and articulation index) are applied to the evaluation and analysis of the interior noises of the commercial vehicle. Using psychoacoustic parameters to evaluate the noises in commercial vehicle, it is of great significance for the analysis and control of the noises in commercial vehicle. The research results provide a theoretical basis for guiding the sound quality design and development of commercial vehicles.


2021 ◽  
Vol 263 (2) ◽  
pp. 4189-4198
Author(s):  
Katsuya Yamauchi ◽  
Minori Dan ◽  
Federico Cioffi ◽  
Luigi Maffei ◽  
Massimiliano Masullo

The heating, ventilation and air-conditioning (HVAC) system is one of the most critical sources in in-vehicle noise environment, especially when cars are moving at low speed or at lower engine rotation. With the transition to electric vehicles (EV) from internal combustion engine vehicles (ICEV), the contribution of powertrain becomes lower on the background noise inside car cabins. The authors have been conducting a collaborative research on HVAC sound quality inside car cabins. In this paper the results of a subjective evaluation of HVAC sound quality were presented, that attempted to compare the perceptual differences among the two groups, i.e. EVs and ICEVs. The result revealed the difference in the noise perception among the two types of vehicles especially softer air flow rate conditions.


2021 ◽  
Vol 263 (3) ◽  
pp. 3218-3222
Author(s):  
Jon Paul Faulkner ◽  
Enda Murphy

European Commission Directive (EU) 2020/367 describes how harmful effects from environmental noise exposure are to be calculated for ischemic heart disease (IHD), high annoyance (HA), and high sleep disturbance (HSD) for road, rail, and aircraft noise under the Environmental Noise Directive's (END) strategic noise mapping process. It represents a major development in understanding the extent of exposure from transport-based environmental noise given it is a legal requirement for all EU member states from the 2022 reporting round. It also has the potential to accelerate the development of stronger noise-health policies across the EU. While this development is to be welcomed, there are a number of basic noise-health policy applications that first need to be implemented in the Irish case if the noise-health situation is be accurately assessed and if public health is to be adequately protected. In order to address this requirement the following paper presents concrete policy and practice recommendations as well as an evaluation of the current application of noise management policy in Ireland which is administered to protect the public from the harmful effects of environmental noise. This paper provides guidance on how noise-health considerations can be integrated into key relevant areas of Irish policy including healthcare, the environment, transportation, and planning.


2021 ◽  
Vol 263 (3) ◽  
pp. 3436-3447
Author(s):  
Dan Lin ◽  
Andrew Eng

Assumptions made on the ground types between sound sources and receivers can significantly impact the accuracy of environmental outdoor noise prediction. A guideline is provided in ISO 9613-2 and the value of ground factor ranges from 0 to 1, depending on the coverage of porous ground. For example, a ground absorption factor of 1 is suggested for grass ground covers. However, it is unclear if the suggested values are validated. The purpose of this study is to determine the sound absorption of different types of ground by measurements. Field noise measurements were made using an omnidirectional loudspeaker and two microphones on three different types of ground in a quiet neighborhood. One microphone was located 3ft from the loudspeaker to record near field sound levels in 1/3 and 1 octave bands every second. The other microphone was located a few hundred feet away to record far field sound in the same fashion as the near field microphone. The types of ground tested were concrete, grass, and grass with trees. Based on the measurement data, it was found that grass and trees absorb high frequency sound well and a ground factor of 1 may be used for 500Hz and up when using ISO 9613-2 methodology. However, at lower frequencies (125 Hz octave band and below), grassy ground reflects sound the same as concrete surfaces. Trees absorb more low frequency sound than grass, but less than ISO 9613-2 suggested.


Sign in / Sign up

Export Citation Format

Share Document