The role of nitric oxide in the regulation of the electrical activity of the trigeminal nerve in the rat

Author(s):  
S.O. Svitko ◽  
K.S. Koroleva ◽  
G.F. Sitdikova ◽  
K.A. Petrova

Nitric oxide (NO) is a gaseous signaling molecule that regulates a number of physiological functions, including its role in the formation of migraine has been established. NO is endogenously produced in the body from L-arginine by NO synthase. The NO donor, nitroglycerin, is a trigger of migraine in humans and is widely used in the modeling of this disease in animals, which suggests the involvement of components of the NO signaling cascade in the pathogenesis of migraine. Based on the results obtained, it was found that an increase in the concentration of both the substrate for the synthesis of NO, L-arginine, and the NO donor, sodium nitroprusside, has a pro-nociceptive effect in the afferents of the trigeminal nerve. In this case, the effect of sodium nitroprusside is associated with the activation of intracellular soluble guanylate cyclase. Key words: nitric oxide, migraine, trigeminal nerve, L-arginine, guanylate cyclase, sodium nitroprusside, nociception.

2004 ◽  
Vol 286 (5) ◽  
pp. L984-L991 ◽  
Author(s):  
Lisa K. Kelly ◽  
Stephen Wedgwood ◽  
Robin H. Steinhorn ◽  
Stephen M. Black

The use of exogenous nitric oxide (NO) has been shown to alter the regulation of other endothelially derived mediators of vascular tone, such as endothelin-1 (ET-1). However, the interaction between NO and ET-1 appears to be complex and remains incompletely understood. One of the major actions of NO is the activation of soluble guanylate cyclase (sGC) with the subsequent generation of cGMP. Therefore, we undertook this study to test the hypothesis that NO regulates ET-1 production via the activation of the sGC/cGMP pathway. The results obtained indicated that the exposure of primary cultures of 4-wk-old ovine pulmonary arterial endothelial cells (4-wk PAECs) to the long-acting NO donor DETA NONOate induced both a dose- and time-dependent decrease in secreted ET-1. This decrease in ET-1 secretion occurred in the absence of changes in endothelin-converting enzyme-1 or sGC expression but in conjunction with a decrease in prepro-ET-1 mRNA. The changes in ET-1 release were inversely proportional to the cellular cGMP content. Furthermore, the NO-independent activator of sGC, YC-1, or treatment with a cGMP analog also produced significant decreases in ET-1 secretion. Conversely, pretreatment with the sGC inhibitor ODQ blocked the NO-induced decrease in ET-1. Therefore, we conclude that exposure of 4-wk PAECs to exogenous NO decreases secreted ET-1 resulting from the activation of sGC and increased cGMP generation.


Nitric Oxide ◽  
2006 ◽  
Vol 15 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Daniela Dal Secco ◽  
Ana P. Moreira ◽  
Andressa Freitas ◽  
João S. Silva ◽  
Marcos A. Rossi ◽  
...  

1995 ◽  
Vol 268 (5) ◽  
pp. H1856-H1861 ◽  
Author(s):  
R. E. Rumbaut ◽  
M. K. McKay ◽  
V. H. Huxley

Nitric oxide (NO) has been reported to modulate microvascular permeability to solutes in whole organs, venules, and cultured endothelial cell monolayers. NO derived from L-arginine via NO synthase activates soluble guanylate cyclase in vascular smooth muscle and endothelial cells. While the effects of NO on capillary water permeability have not been characterized, other activators of guanylate cyclase, such as sodium nitroprusside and atrial natriuretic peptide, increase capillary hydraulic conductivity (Lp). We hypothesized that inhibition of NO synthase with the arginine analogue, NG-monomethyl-L-arginine (L-NMMA), would decrease Lp from control levels. Lp was assessed in situ in single perfused frog mesenteric capillaries, first during control conditions (Lcontrolp) and then during superfusion (Ltestp) with either L-NMMA, NG-monomethyl-D-arginine (D-NMMA), a biologically inert enantiomer, or L-NMMA and L-arginine. Superfusion with 1 microM L-NMMA caused a decrease in Lp (Ltestp/Lcontrolp = 0.6 +/- 0.1, P < 0.001), whereas 1 microM D-NMMA was without effect on Lp (Ltestp/Lcontrolp = 1.0 +/- 0.2). The decrease in Lp by 1 microM L-NMMA was not only prevented by the presence of excess L-arginine (100 microM), but Lp increased from control (Ltestp/Lcontrolp = 1.4 +/- 0.2, P < 0.05). Furthermore, superfusion of L-arginine (100 microM) caused an increase in capillary Lp (Ltestp/Lcontrolp = 2.4 +/- 0.9, P < 0.05), whereas D-arginine had no effect on Lp (Ltestp/Lcontrolp = 1.2 +/- 0.3). The results of this study support our hypothesis that inhibition of NO synthase decreases capillary Lp in the intact circulation. In addition, L-arginine increases capillary Lp in our model.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 268 (2) ◽  
pp. G207-G214 ◽  
Author(s):  
A. Rodriguez-Membrilla ◽  
V. Martinez ◽  
M. Jimenez ◽  
E. Gonalons ◽  
P. Vergara

The main objective was to study the role of nitric oxide (NO) in the conversion of migrating myoelectric complexes (MMC) to the irregular electrical activity characteristic of the postprandial state. Both rats and chickens were implanted with electrodes for electromyography in the small intestine. Intravenous infusion of NG-nitro-L-arginine (L-NNA), a NO synthase inhibitor, induced an organized MMC-like pattern in fed rats. Infusion of sodium nitroprusside, a NO donor, disrupted the MMC, inducing a postprandial-like motor pattern in fasting rats. Similarly, in chickens L-NNA mimicked the fasting pattern, consisting of a shortening of phase II, enlargement of phase III, orad displacement of the origin of the MMC, and an increase in the speed of phase III propagation. An inhibition of NO synthesis seems to be involved in the induction of the fasting motor pattern, whereas an increase of NO mediates the occurrence of the fed pattern. It is suggested that NO might be the final mediator in the control of small intestine motor patterns.


2000 ◽  
Vol 92 (3) ◽  
pp. 813-820 ◽  
Author(s):  
Hiroyuki Kinoshita ◽  
Toshizo Ishikawa ◽  
Yoshio Hatano

Background A class Ib antiarrhythmic drug, mexiletine, augments relaxations produced by adenosine triphosphate (ATP) sensitive K+ channel openers in isolated rat aortas, suggesting that it produces changes in the vasodilation mediated by ATP-sensitive K+ channels. Nitric oxide can induce its vasodilator effect via K+ channels, including ATP-sensitive K+ channels, in smooth muscle cells. Effects of mexiletine on arterial relaxations to nitric oxide donors, have not been studied. Therefore, the current study in isolated rat aortas was designed to (1) evaluate whether mexiletine augments relaxation in response to nitric oxide donors, including sodium nitroprusside, and (2) determine the role of K+ channels in mediating effects of mexiletine on such nitric oxide-mediated relaxation. Methods Rings of rat aortas without endothelia were suspended for isometric force recording. Concentration-response curves of sodium nitroprusside (10(-10) to 10(-5) M) and 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC-7; 10(-9) to 10(-5) M) were obtained in the absence and in the presence of mexiletine, in combination with a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo [4,3,-a]quinoxaline-1-one (ODQ), or inhibitors for ATP-sensitive K+ channels (glibenclamide), inward rectifier K+ channels (BaCl2), delayed rectifier K+ channels (4-aminopyridine), large conductance Ca2+-dependent K+ channels (iberiotoxin), or small conductance Ca2+-dependent K+ channels (apamin). Results Mexiletine (10(-5) or 3 x 10(-5) M) augmented relaxations to sodium nitroprusside and NOC-7. In arteries treated with glibenclamide (10(-5) M), mexiletine (3 x 10(-5) M) did not affect relaxations to nitric oxide donors, whereas mexiletine augmented relaxations to sodium nitroprusside despite the presence of BaCl2 (10(-5) M), 4-aminopyridine (10(-3) M), iberiotoxin (5 x 10(-8) M) and apamin (5 x 10(-8) M). Relaxations to sodium nitroprusside were abolished by ODQ (5 x 10(-6) M), whereas these relaxations were augmented by mexiletine (3 x 10(-5) M) in arteries treated with ODQ (5 x 10(-6) M). Conclusions These results suggest that ATP-sensitive K+ channels in vascular smooth muscle, contribute to the augmented vasodilator effect of a nitric oxide donor, sodium nitroprusside induced by mexiletine, and that the vasodilator effect is produced, at least in part, via the guanylate cyclase-independent mechanism.


Reproduction ◽  
2021 ◽  
Vol 161 (1) ◽  
pp. 31-41
Author(s):  
Deepak S Hiremath ◽  
Fernanda B M Priviero ◽  
R Clinton Webb ◽  
CheMyong Ko ◽  
Prema Narayan

Timely activation of the luteinizing hormone receptor (LHCGR) is critical for fertility. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP) due to premature synthesis of testosterone. A mouse model of FMPP (KiLHRD582G), expressing a constitutively activating mutation in LHCGR, was previously developed in our laboratory. KiLHRD582G mice became progressively infertile due to sexual dysfunction and exhibited smooth muscle loss and chondrocyte accumulation in the penis. In this study, we tested the hypothesis that KiLHRD582G mice had erectile dysfunction due to impaired smooth muscle function. Apomorphine-induced erection studies determined that KiLHRD582G mice had erectile dysfunction. Penile smooth muscle and endothelial function were assessed using penile cavernosal strips. Penile endothelial cell content was not changed in KiLHRD582G mice. The maximal relaxation response to acetylcholine and the nitric oxide donor, sodium nitroprusside, was significantly reduced in KiLHRD582G mice indicating an impairment in the nitric oxide (NO)-mediated signaling. Cyclic GMP (cGMP) levels were significantly reduced in KiLHRD582G mice in response to acetylcholine, sodium nitroprusside and the soluble guanylate cyclase stimulator, BAY 41-2272. Expression of NOS1, NOS3 and PKRG1 were unchanged. The Rho-kinase signaling pathway for smooth muscle contraction was not altered. Together, these data indicate that KiLHRD582G mice have erectile dysfunction due to impaired NO-mediated activation of soluble guanylate cyclase resulting in decreased levels of cGMP and penile smooth muscle relaxation. These studies in the KiLHRD582G mice demonstrate that activating mutations in the mouse LHCGR cause erectile dysfunction due to impairment of the NO-mediated signaling pathway in the penile smooth muscle.


2001 ◽  
Vol 204 (7) ◽  
pp. 1319-1332 ◽  
Author(s):  
H. Aonuma ◽  
P.L. Newland

Little is known of the action of nitric oxide (NO) at the synaptic level on identified interneurones in local circuits that process mechanosensory signals. Here, we examine the action of NO in the terminal abdominal ganglion of the crayfish Pacifastacus leniusculus, where it has modulatory effects on the synaptic inputs of 17 identified ascending interneurones mediated by electrical stimulation of a sensory nerve. To analyse the role of NO in the processing of sensory signals, we bath-applied the NO donor SNAP, the NO scavenger PTIO, the nitric oxide synthase (NOS) inhibitor l-NAME, the NOS substrate l-arginine, a cyclic GMP (cGMP) analogue, 8-Br-cGMP, and the soluble guanylate cyclase (sGC) inhibitor ODQ. The effects of these chemicals on the synaptic inputs of the interneurones could be divided into two distinct classes. The NO donor SNAP enhanced the inputs to one class of interneurone (class 1) and depressed those to another (class 2). Neither the inactive isomer NAP nor degassed SNAP had any effect on the inputs to these same classes of interneurone. The NO scavenger PTIO caused the opposite effects to those of the NO donor SNAP, indicating that endogenous NO may have an action in local circuits. Preventing the synthesis of NO using l-NAME had the opposite effect to that of SNAP on each response class of interneurone. Increasing the synthesis of endogenous NO by applying l-arginine led to effects on both response classes of interneurone similar to those of SNAP. Taken together, these results suggested that NO was the active component in mediating the changes in amplitude of the excitatory postsynaptic potentials. Finally, the effects of 8-Br-cGMP were similar to those of the NO donor, indicating the possible involvement of a NO-sensitive guanylate cyclase. This was confirmed by preventing the synthesis of cGMP by sGC using ODQ, which caused the opposite effects to those of 8-Br-cGMP on the two response classes of interneurone. The results indicate that a NO-cGMP signal transduction pathway, in which NO regulates transmitter release from mechanosensory afferents onto intersegmental ascending interneurones, is probably present in the local circuits of the crayfish.


1997 ◽  
Vol 62 (9) ◽  
pp. 1355-1383 ◽  
Author(s):  
Petr Vetrovsky ◽  
Gustav Entlicher

The nitrogen oxide (NO), a free radical molecule, plays a key role in the regulation of mammalian physiology and pathophysiology, e.g., in cardiovascular, nervous or immune systems. This molecule is produced from guanidino moiety of amino acid L-arginine with NG-hydroxy-L-arginine as intermediate and L-citrulline as a co-product of this reaction. This conversion is catalyzed by an ezyme called NO-synthase. The NO-synthase belongs to the cytochrome P450 superfamily and four its isoenzymes are known so far. Two (denoted NOS-I and III) are constitutive, generate lower amounts (pmol) of NO and are regulated by Ca++/calmodulin system. The others (NOS-II and IV) are inducible, produce a larger quantity of NO (nmol) and are regulated at a transcriptional level. The constitutive form is present, for example, in endothelial and neuronal cells whereas the inducible form is de novo synthesized as a consequence of certain stimuli (including cytokines) in macrophages, vascular smooth muscle cells and other cells. There are several target molecules for NO depending on cells. The most frequent target is supposed to be the soluble guanylate cyclase. However, superoxide anion is a very important target for NO, too. The reaction between these two molecules leads to the production of peroxynitrite, the fate of which depends on environmental conditions. Therefore, the importance of this reaction is still debated. This review deals with the nature of NO, the mechanisms of its production, the role of intermediate NG-hydroxy-L-arginine and summarizes the biology of superoxide anion with respect to its reaction with NO. A review with 218 references.


1995 ◽  
Vol 268 (5) ◽  
pp. F953-F959 ◽  
Author(s):  
X. R. He ◽  
S. G. Greenberg ◽  
J. P. Briggs ◽  
J. B. Schnermann

To examine the possible role of NO in macula densa control of renin secretion, we examined the effects of varying NO availability on renin release in the isolated perfused rabbit juxtaglomerular apparatus (JGA). Gradual increments of luminal Na/Cl concentration ratio (mM/mM) from 26/7 over 46/27, 66/47, to 86/67 caused a progressive decrease in renin secretion from (as log of nano-Goldblatt hog units vs. time, i.e., log nGU/min) 1.09 +/- 0.34 to 0.46 +/- 0.24 log nGU/min, with the greatest change occurring at the first concentration step. The presence of 0.7 mM N omega-nitro-L-arginine (NNA), an NO synthase inhibitor, in the luminal fluid significantly reduced renin secretion at the lowest Na/Cl concentration ratio to 0.65 +/- 0.32 log nGU/min (P < 0.01 compared with control). Renin secretion at the higher Na/Cl concentration ratios was not significantly affected by NNA compared with control. In contrast to these results, the addition of the NO donor nitroprusside (1 mM) to the bath caused a reduction in renin secretion from 1.0 +/- 0.39 to 0.47 +/- 0.46 log nGU/min (P < 0.05), an effect that was reversed by bath addition of 0.01 mM methylene blue. Similarly, addition of L-arginine (0.7 mM) to the bath reduced renin secretion from 0.99 +/- 0.37 to 0.81 +/- 0.38 log nGU/min (P < 0.01), whereas addition of L-arginine to the luminal fluid increased renin secretion from 0.85 +/- 0.43 to 1.94 +/- 0.46 log nGU/min (P < 0.05). The stimulatory effect of luminal L-arginine was reversed by the luminal addition of NNA.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document