Faculty Opinions recommendation of Pulling habits out of rats: adenosine 2A receptor antagonism in dorsomedial striatum rescues meth-amphetamine-induced deficits in goal-directed action.

Author(s):  
Yavin Shaham ◽  
Sam Golden
2015 ◽  
Vol 22 (1) ◽  
pp. 172-183 ◽  
Author(s):  
Teri M. Furlong ◽  
Alva S.A. Supit ◽  
Laura H. Corbit ◽  
Simon Killcross ◽  
Bernard W. Balleine

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Yasin B. Seven ◽  
Latoya L. Allen ◽  
Arash Tadjalli ◽  
Amanda Zwick ◽  
Mohamad El‐Chami ◽  
...  

2021 ◽  
Author(s):  
Xiaoxuan Yu ◽  
Shijie Chen ◽  
Qiang Shan

Abstract In order to achieve optimal outcomes in an ever-changing environment, humans and animals generally manage their action control via either goal-directed action or habitual action. These two action strategies are thought to be encoded in distinct parallel circuits in the dorsal striatum, specifically, the posterior dorsomedial striatum (DMS) and the dorsolateral striatum (DLS), respectively. The striatum is primarily composed of two subtypes of medium spiny neurons (MSNs): the direct-pathway striatonigral and the indirect-pathway striatopallidal MSNs. MSN-subtype-specific synaptic plasticity in the DMS and the DLS has been revealed to underlie goal-directed action and habitual action, respectively. However, whether any MSN-subtype-specific synaptic plasticity in the DMS is associated with habitual action, and if so, whether the synaptic plasticity affects the formation of habitual action, are not known. This study demonstrates that postsynaptic depression in the excitatory synapses of the direct-pathway striatonigral MSNs in the DMS is formed after habit learning. Moreover, chemogenetically rescuing this depression compromises the acquisition, but not the expression, of habitual action. These findings reveal that an MSN-subtype-specific synaptic plasticity in the DMS affects habitual action and suggest that plasticity in the DMS as well as in the DLS contributes to the formation of habitual action.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
James Peak ◽  
Billy Chieng ◽  
Genevra Hart ◽  
Bernard W Balleine

The posterior dorsomedial striatum (pDMS) is necessary for goal-directed action; however, the role of the direct (dSPN) and indirect (iSPN) spiny projection neurons in the pDMS in such actions remains unclear. In this series of experiments, we examined the role of pDMS SPNs in goal-directed action in rats and found that whereas dSPNs were critical for goal-directed learning and for energizing the learned response, iSPNs were involved in updating that learning to support response flexibility. Instrumental training elevated expression of the plasticity marker Zif268 in dSPNs only, and chemogenetic suppression of dSPN activity during training prevented goal-directed learning. Unilateral optogenetic inhibition of dSPNs induced an ipsilateral response bias in goal-directed action performance. In contrast, although initial goal-directed learning was unaffected by iSPN manipulations, optogenetic inhibition of iSPNs, but not dSPNs, impaired the updating of this learning and attenuated response flexibility after changes in the action-outcome contingency.


2021 ◽  
Author(s):  
Youna Vandaele ◽  
David J Ottenheimer ◽  
Patricia H Janak

For proper execution of goal-directed behaviors, individuals require both a general representation of the goal and an ability to monitor their own progress toward that goal. Here, we examine how dorsomedial striatum (DMS), a region pivotal for forming associations among stimuli, actions, and outcomes, encodes the execution of goal-directed action sequences that require self-monitoring of behavior. We trained rats to complete a sequence of at least 5 consecutive lever presses (without visiting the reward port) to obtain a reward and recorded the activity of individual cells in DMS while rats performed the task. We found that the pattern of DMS activity gradually changed during the execution of the sequence, permitting accurate decoding of sequence progress from neural activity at a population level. Moreover, this sequence-related activity was blunted on trials where rats did not complete a sufficient number of presses. Overall, these data suggest a link between DMS activity and the execution of behavioral sequences that require monitoring of ongoing behavior.


2020 ◽  
Author(s):  
James Peak ◽  
Billy Chieng ◽  
Genevra Hart ◽  
Bernard W. Balleine

SummaryThe posterior dorsomedial striatum (pDMS) is necessary for goal-directed action, however the role of the direct (dSPN) and indirect (iSPN) spiny projection neurons in the pDMS in such action remains unclear. In this series of experiments, we examined the role of pDMS SPNs in goal-directed action and found that, whereas dSPNs were critical for goal-directed learning and for energizing the learned response, iSPNs were involved in updating that learning to support response flexibility. Instrumental training elevated expression of the plasticity marker Zif268 in dSPNs only, and chemogenetic suppression of dSPN activity during training prevented goal-directed learning. Unilateral optogenetic inhibition of dSPNs induced an ipsilateral response bias in goal-directed action performance. In contrast, although initial goal-directed learning was unaffected by iSPN manipulations, optogenetic inhibition of iSPNs, but not dSPNs, impaired the updating of this learning and attenuated response flexibility after changes in the action-outcome contingency.


Sign in / Sign up

Export Citation Format

Share Document