scholarly journals Frequency and antibiotic resistance of Helicobacter pullorum among exposed and non-exposed population

2021 ◽  
Vol 8 (4) ◽  
pp. 303-308
Author(s):  
Hosein Akhlaghi ◽  
Seyed Hesamodin Emadi Chashmi ◽  
Ashkan Jebelli Javan

Background: Helicobacter pullorum can infect the intestinal tracts of both humans and avian species. This study aimed to assess the frequency and antibiotic resistance of H. pullorum isolated from workers in the poultry slaughterhouses, farms, and markets as exposed population and healthy people who referred to the hospital as non-exposed population by culture method and polymerase chain reaction (PCR) test. Methods: Two hundred healthy individuals, including 100 individuals from exposed population and 100 from non-exposed population were selected in Semnan. Fresh stool samples were examined by conventional culture method and biochemical tests. PCR test with 16S rRNA gene was employed to confirm the H. pullorum isolates. Antibiotic resistance test was done using the disk diffusion method and various antimicrobial agents. Results: Generally, 17 (17%) samples from exposed population and 12 (12%) samples from non-exposed population were H. pullorum positive by culture method and biochemical tests. However, PCR test could confirm 10 (10%) and 7 (7%) samples from exposed and non-exposed populations, respectively. Therefore, the frequency of H. pullorum was determined to be 9.5%. Antibiotic resistance test could reveal that most of the isolates were resistant to ciprofloxacin (84.2%), whereas resistance to colistin and fosfomycin was found to be 15.8%. Conclusion: The present study illustrated that H. pullorum can be present among healthy population with the low frequency rate. Moreover, it was indicated that the frequency of this food-borne pathogen is high in the exposed population. Therefore, there is a high demand for good observation for slaughter hygiene and implementation of routine surveillance in the poultry farms and markets.

2020 ◽  
Vol 8 (3) ◽  
pp. 101-106
Author(s):  
Hosein Akhlaghi ◽  
Seyed Hesamodin Emadi Chashmi ◽  
Ashkan Jebelli Javan

Background: Helicobacter pullorum predominantly colonizes the gut of apparently healthy chickens and the livers and intestinal contents of hens with enteritis and vibrionic hepatitis. Objective: The aim of this study was to assess the prevalence and antibiotic resistance of Helicobacter pullorum in broiler chickens, laying hens, and turkeys in Semnan province. Materials and Methods: A total of 300 samples were collected from 60 poultry farms in Semnan province, including 240 cecal samples from 48 broiler farms, 30 fecal samples from 6 laying hen farms, and 30 cecal samples from 6 turkey farms. Each sample was analyzed by conventional culture method and biochemical tests. The suspected colonies were subjected to polymerase chain reaction (PCR) using 16S rRNA gene. Antibiotic resistance of the confirmed colonies was determined using disk diffusion method. Results: Of 300 samples, 85 (28.3%) samples obtained from 36 (60%) poultry farms were positive for H. pullorum. Of these samples, 72 (30%) were from 30 (62.5%) broiler farms, 4 (13.3%) were from 2 (33.3%) laying hen farms, and 9 (30%) were from 4 (66.7%) turkey farms. Moreover, resistance to ciprofloxacin was observed in all of the H. pullorum isolates. Conclusion: This study demonstrated the moderate prevalence of H. pullorum in poultry in Semnan province for the first time, while the prevalence of this pathogen in laying hen and turkey has not been determined in Iran. In addition, this study could reveal the antibiotic resistance profile of H. pullorum as the first report in Iran. Therefore, more studies are needed to focus on the prevalence and antibiotic resistance of H. pullorum in poultry in other regions of Iran.


2019 ◽  
Vol 7 (2) ◽  
pp. 37-43 ◽  
Author(s):  
Zulkar Nain ◽  
Md. Ariful Islam ◽  
Mohammad Minnatul Karim

Background: Biofilm is a surface adhered extracellular polymer matrix produced by bacteria. The establishment of biofilms is considered as an important pathogenic trait in many chronic infections and antibiotic resistance. Objective: The present study was intended to evaluate biofilm forming potency and antibiotic resistance (AR) pattern in clinical and non-clinical bacterial isolates, and their phylogenetic characterization. Materials and Methods: A total of 82 bacterial isolates were obtained from clinical settings and animal farms from southern (Kushtia-Jhenaidah) region of Bangladesh. Biofilm forming potentials and AR profile were evaluated by standard biofilm assay and Kirby-Bauer disk diffusion method, respectively. Further, antibiotic exposure was assessed by multiple antibiotic resistance (MAR) value indexing. Furthermore, statistical methods were applied to estimate the relationship between AR and biofilm formation. Finally, selected isolates were characterized by morphological and biochemical tests, as well as 16S rRNA gene sequencing. Results: Clinical isolates showed higher biofilm formation (OD595=1.17±0.03) than non-clinical isolates (OD595=0.68±0.03). Among all, Pseudomonas isolates produced the highest amount of biofilms (OD595=2.08±0.02). The AR profiles fell within 46.67-86.67% and MAR index ranged from 0.47 to 0.87. Moreover, a significant positive correlation (P<0.05) was found between biofilm formation and AR. Eventually, heavy biofilm producers with ≥60% resistance profile were characterized and identified as Escherichia coli, Cronobacter sakazakii, Pseudomonas aeruginosa, Staphylococcus sciuri, and Staphylococcus aureus. Conclusion: In general, biofilm formation and MAR were highly correlated regardless of the source, type, and environment of the isolates. Therefore, a rigorous evaluation of both biofilm formation and AR is demanded to minimize AR and associated problems.


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 2956-2961 ◽  
Author(s):  
Ying-jie Yang ◽  
Ning Zhang ◽  
Shi-qi Ji ◽  
Xin Lan ◽  
Kun-di Zhang ◽  
...  

A Gram-stain-negative, facultatively anaerobic, non-motile and coccoid- to short-rod-shaped bacterium, designated strain Dys-CH1T, was isolated from the hindgut of a fungus-growing termite Macrotermes barneyi. The optimal pH and cultivation temperature of strain Dys-CH1T were pH 7.2–7.6 and 35–37 °C, respectively. Sequence analysis of 16S rRNA gene showed that Dys-CH1T shared 94.6 % and 90.9 % similarity with Dysgonomonas capnocytophagoides JCM 16697T and Dysgonomonas gadei CCUG 42882T, respectively. Strain Dys-CH1T was found to be different from other species of the genus Dysgonomonas with validly published names with respect to taxonomically important traits, including habitat, biochemical tests, DNA G+C content, bile resistance, fatty-acid composition and susceptibility to antimicrobial agents. On the basis of these characteristics, strain Dys-CH1T represents a novel species of the genus Dysgonomonas for which the name Dysgonomonas macrotermitis sp. nov. is proposed. The type strain is Dys-CH1T ( = JCM 19375T = DSM 27370T).


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


Chemotherapy ◽  
2015 ◽  
Vol 61 (2) ◽  
pp. 72-76 ◽  
Author(s):  
Hamid Lavakhamseh ◽  
Parviz Mohajeri ◽  
Samaneh Rouhi ◽  
Pegah Shakib ◽  
Rashid Ramazanzadeh ◽  
...  

Background:Escherichia coli isolates displaying multidrug-resistance (MDR) are a major health care problem that results in mortality and morbidity. Integrons are DNA elements in E.coli that are related to antibiotic resistance. The aim of this study was to determine class 1 and 2 integrons and MDR in E. coli isolates obtained from patients in two Sanandaj hospitals, located in Iran. Materials and Methods: 120 isolates of E. coli were obtained from clinical specimens (from November 2013 to April 2014), and the susceptibility of E. coli antimicrobial agents was determined using the Kirby-Bauer disk diffusion method according to the CLSI. PCR were applied for detection of class 1 and 2 integrons in E. coli isolates. SPSS software v16 and the χ2 test were used for statistical analysis in order to calculate the association between antibiotic resistance and the presence of integrons (p < 0.05). Results: In a total of 120 E. coli isolates, 42.5% had MDR. Integrons were found in 50.9% of the MDR isolates, and included 47.05% class 1 and 3.92% class 2 integrons. The strains did not have both classes of integrons simultaneously. An association between resistance to antibiotics and integrons was found. Conclusion: Our results showed that int1 and int2 genes present in E. coli isolates obtained from patients cause MDR in this isolates. Since such bacteria are a reservoir for the transmission of MDR bacteria, appropriate programs are necessary to reduce this problem.


2006 ◽  
Vol 11 (5) ◽  
pp. 11-12 ◽  
Author(s):  
G Asseva ◽  
P Petrov ◽  
I Ivanov ◽  
T Kantardjiev

This article analyses the distribution of resistant salmonella and resistance mechanisms among the most frequently encountered serotypes in Bulgaria. Culture, biochemical tests and serotyping were used for identification. Screening for resistance to 14 antimicrobial agents with the standard Bauer-Kirbi disk-diffusion method. The double disk synergy method was used to determine production of extended-spectrum â-lactamases (ESBL). Transfer of genes coding for ESBLs with experimental conjugation. Specific primers were used for PCR detection of bla-CTX-M, bla-SHV and bla-TEM. 245 resistant salmonella strains were determined in our study; the majority originated from sporadic cases of human illness or asymptomatic infection and the remaining 23 were isolated from outbreaks. 79 producers of ESBL were detected: 5 S. Enteritidis, 1 S. Typhimurium, 9 S. Isangi and 62 S. Corvallis with types of enzymes: CTX-M3, TEM and SHV. Gene coding for extended-spectrum â- lactamases were successfully transferred into a recipient Escherichia coli C1A strain simultaneously with genes coding for resistance to aminoglycosides and sulphonamides (for bla-CTX-M3) and gene coding for resistance to aminoglycosides and chloramphenicol (for bla-SHVand bla-TEM). PCR amplification revealed bla-CTX-M3 genes in S. Enteritidis, and bla-SHV and bla-TEM in S. Corvallis. Salmonellae have revealed increasing resistance to all clinically important groups of antimicrobial agents. Bulgaria is the first country in the world where ESBL in serotype Corvallis has been reported. A wide diversity of resistance genes is found among the leading serotypes of salmonella causing human disease in Bulgaria.


1995 ◽  
Vol 37 (4) ◽  
pp. 291-296
Author(s):  
Claudio Tavares Sacchi ◽  
Ana Paula Silva de Lemos ◽  
Silvana Tadeu Casagrande ◽  
Alice Massumi Mori ◽  
Carmecy Lopes de Almeida

In the present study we report the results of an analysis, based on ribotyping of Corynebacterium diphtheriae intermedius strains isolated from a 9 years old child with clinical diphtheria and his 5 contacts. Quantitative analysis of RFLPs of rRNA was used to determine relatedness of these 7 C.diphtheriae strains providing support data in the diphtheria epidemiology. We have also tested those strains for toxigenicity in vitro by using the Elek's gel diffusion method and in vivo by using cell culture method on cultured monkey kidney cell (VERO cells). The hybridization results revealed that the 5 C.diphtheriae strains isolated from contacts and one isolated from the clinical case (nose case strain) had identical RFLP patterns with all 4 restriction endonucleases used, ribotype B. The genetic distance from this ribotype and ribotype A (throat case strain), that we initially assumed to be responsible for the illness of the patient, was of 0.450 showing poor genetic correlation among these two ribotypes. We found no significant differences concerned to the toxin production by using the cell culture method. In conclusion, the use of RFLPs of rRNA gene was successful in detecting minor differences in closely related toxigenic C.diphtheriae intermedius strains and providing information about genetic relationships among them.


2020 ◽  
Vol 18 ◽  
Author(s):  
Sepideh Hassanzadeh ◽  
Sudabeh Ebrahimi ◽  
Sara Ganjloo ◽  
Saeid Amel Jamehdar ◽  
Samaneh Dolatabadi

Introduction: The biofilm formation by Pseudomonas aeruginosa seems to protect the bacteria from antibiotics since these entities are highly resistant to such antimicrobial agents. The aim of this study was to investigate the role of Lactobacillus salivarus, Lactobacillus plantarum supernatants and CuII Schiff base complex in eliminating planktonic cells and biofilm of P. aeruginosa. Methods: : One hundred specimens of blood, urine, cerebrospinal fluid, respiratory samples, and wound swabs were collected from patients attending three hospitals in Mashhad. All specimens were identified by biochemical tests. The susceptibility of the isolates to the conventional antibiotics were assessed using disk diffusion method. The biofilm formation ability of P. aeruginosa isolates was evaluated by crystal violet assay and confirmed using PCR. The anti-planktonic and anti-biofilm ability of L. salivarus, L. plantarum supernatants and CuII Schiff base complex was evaluated separately in P. aeruginosa isolates. Results and Conclusion: The highest and lowest resistance rates was detected in Cefazoline (95%) and cefepime (23%), respectively. The thickest biofilm was produced by 8% of P. aeruginosa isolates, 9% and 83% of the isolates were considered as moderate and weak biofilm producers, respectively. The rhlR and lasR genes was reported in 100% of the isolates, but algD gene was existence in 92% of them. Particularly, the CuII Schiff base complex could affect both planktonic and biofilm cells by the lowest concentration in comparison of probiotic supernatants. L. plantarum supernatant inhibited planktonic cells at a lower concentration than L. salivarius. Also, L. salivarius showed better antibiofilm activity than another probiotic in lower doses of supernatant. Unlike that these compounds have not completely eliminated biofilm cells, but only reduced the biofilm formation.Metal Schiff base complex and Lactobacillus supernatants is a potent antimicrobial agent against Pseudomonas aeruginosa biofilm cells.


2013 ◽  
Vol 14 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Amit Raj Sharma ◽  
Dwij Raj Bhatta ◽  
Jyotsna Shrestha ◽  
Megha Raj Banjara

Correction: on 23/08/2014, the spelling of 'Uninary' in the title was changed to 'Urinary'.Antibiotic resistance among uropathogens is emerging public health problem. This study was done for assessing antibiotic and multidrug resistance (MDR) patterns of Escherichia coli at Bir Hospital, Kathmandu, among suspected urinary tract infection (UTI) patients from January to March, 2011. Altogether, 739 urine samples were analysed by semi-quantitative culture method and uropathogens were identified by conventional methods. E. coli was tested (109 samples) for antimicrobial susceptibility by Kirby Bauer disc diffusion method as per Clinical and Laboratory Standard Institute (CLSI) guidelines. Out of 739 samples, 27.3% gave significant growth of E. coli while 3.1% and 29.2% samples gave mixed and non-significant growth respectively. E. coli was found to be most predominant isolate (54.0%) followed by coagulase negative Staphylococci (CoNS) (21.3%) and Enterococcus spp. (7.3%). Nitrofurantoin was found to be the most effective antibiotic followed by ciprofloxacin and ofloxacin while cephalexin was least effective. Out of 109 E. coli isolates, 90.8% were MDR strains and most of the isolates had a very high multiple antibiotic resistance (MAR) index, suggesting the origin of the isolates to be of high antibiotic usage. E. coli showed higher rate of resistance towards commonly used oral antibiotics. However, nitrofurantoin is still active against organisms. Thus, nitrofurantoin could be the choice for empirical therapy of UTI. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 177-184 DOI: http://dx.doi.org/10.3126/njst.v14i1.8938


2020 ◽  
pp. 508-513
Author(s):  
Zamila Bueaza Bupasha ◽  
Ruhena Begum ◽  
Sharna Karmakar ◽  
Rahima Akter ◽  
Md Bayzid ◽  
...  

Multidrug-resistant Salmonella could pose a severe public health threat. The current study aimed to investigate the prevalence of antibiotic resistance and some antibiotic-resistant genes in Salmonella spp. isolated from pigeons in a live bird market, Chattogram, Bangladesh. A total of 100 cloacal swab samples were collected aseptically from apparently healthy pigeons in the live bird market, namely Riazuddin Bazar in Chattogram city, Bangladesh. Different bacteriological and biochemical tests were used for the isolation and identification of Salmonella spp. The susceptibility test of Salmonella isolates to different antibiotics was performed by the disk diffusion method. PCR assay using specific primers was used for antibiotic resistance genes detection. The results indicated that the prevalence of Salmonella spp. was 29% in sampled birds. The highest antibiotic resistance rate was found to be ampicillin (93.1%), followed by both sulfamethoxazole-trimethoprim and tetracycline (86.2%). In contrast, 65.5% of isolates were found sensitive to ciprofloxacin, followed by colistin (62.1%), kanamycin (55.2%), and gentamicin (48.3%). 96.6% of Salmonella isolates were classified as multidrug-resistant and harbored blaTEM, tetA, sul1, and sul2 genes. In conclusion, pigeons as carriers of antibiotic-resistant Salmonella spp. may pose a health risk to other birds and humans.


Sign in / Sign up

Export Citation Format

Share Document