laying hen
Recently Published Documents


TOTAL DOCUMENTS

1240
(FIVE YEARS 197)

H-INDEX

46
(FIVE YEARS 4)

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Xiaoyue Hu ◽  
Liai Gao ◽  
Limin Huo ◽  
Lihua Li ◽  
Mengwei Er

2022 ◽  
Vol 10 (1) ◽  
pp. 1-9
Author(s):  
Nágela Maria Henrique Mascarenhas ◽  
Dermeval Araújo Furtado ◽  
Bonifácio Benício de Souza ◽  
Airton Gonçalves de Oliveira ◽  
Antonio Nelson Lima da Costa ◽  
...  

Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Arda Sözcü ◽  
Aydın İpek ◽  
Züleyha Oğuz ◽  
Stefan Gunnarsson ◽  
Anja B. Riber

Free-range systems are considered to improve bird health and welfare, thereby satisfying consumer demands. Behavioral time budget, fear level and clinical welfare indicators were compared for two Turkish laying hen genotypes, Atak-S (brown) and Atabey (white), reared in a free-range system. A total of 420 laying hens (210 Atak-S, 210 Atabey) were studied between 19 and 72 weeks of age. Higher percentages of eating and drinking behavior, feather pecking, and explorative pecking were observed for Atak-S hens, whereas Atabey hens were preening, walking–standing, and resting more. The duration of tonic immobility was longer, and the number of inductions was lower in Atabey compared with Atak-S hens. Atabey hens had less keel bone damages and better plumage conditions on the breast, wing, and tail at 56 and 72 weeks of age than Atak-S hens. Footpad dermatitis was more common in Atabey hens at 40 weeks, whereas Atak-S hens had a higher prevalence of footpad dermatitis with moderate lesions at 72 weeks of age. These findings indicate that free-range Atak-S hens may be more prone to keel bone damage and development of feather pecking, but they showed less foot lesions and were less fearful.


Author(s):  
Yu. V. Osadcha ◽  
G. I. Sakhatsky

The article presents the results of influence of monochrome light with different light wavelengths on the hens’ viability and productivity. For this purpose, in the conditions of a modern complex for production of food eggs in a poultry house with an area of 2915 m2, 4 groups of hens of the industrial herd “Hy-Line W-36” were formed, each of which was kept in a separate poultry house similar in area and cage equipment. Each poultry house was equipped with “Big Dutchman” cage batteries, consisting of 1176 cages with an area of 40544 cm2. The differences between the poultry houses applied only to LED lamps. Hens of the 1st group were kept using LED lamps with a peak light wavelength of 458 nm (blue color of the spectrum), the 2nd group – 603 nm (yellow color of the spectrum), the 3rd group – 632 nm (orange color of the spectrum) and 4 groups – 653 nm (red color of the spectrum). Every day, for 34 weeks of the productive period (up to 52 weeks of age), the number of eggs laid by the laying hens of each group was determined. The number of hatched hens (due to death and culling) was also counted daily and the number of livestock was determined. Once a week, the weight of eggs and live weight of laying hens were measured from certain labeled cages. It was found that the reduction of the wavelength of light during the keeping of hens in the cages of multi-tiered batteries affects their viability and reproductive function. The decrease in the peak wavelength from 653 to 632 nm, which was manifested by a change in the color of light from red to orange, was accompanied by a decrease in the preservation by 0.3 %, body weight – by 0.8 %, egg laying on the initial laying – by 3.1 %, egg-laying per average laying hen – by 2.8 % and feed costs – by 0.2 %. The decrease in the peak wavelength to 603 nm, that is the change in the color of light from red and orange to yellow, was accompanied by a decrease in the preservation by 6.4–6.7 %, body weight – by 0.5–1.3 %, egg production by initial laying hen – by 7.1–10.0 %, laying hens on the average laying hen – by 0.4–3.2 % and feed costs – by 2.0–2.1 %. The decrease in the peak wavelength to 458 nm, that is the change in light color from red, orange and yellow to blue, was accompanied by a decrease in the preservation by 3.2–9.9 %, body weight – by 5.2–6.5 %, laying hens per initial laying hen – by 6.4–15.8 %, laying hens per middle laying hen – by 2.9–6.0 % and feed costs – by 1.0–3.1 %.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2384
Author(s):  
María Soto-Herranz ◽  
Mercedes Sánchez-Báscones ◽  
Juan Manuel Antolín-Rodríguez ◽  
Pablo Martín-Ramos

Nitrogen losses during composting processes lead to emissions problems and reduce the compost fertilizer value. Gas-permeable membranes (GPM) are a promising approach to address the challenge of reducing nitrogen losses in composting processes. This study investigated the applicability of two GPM membrane systems to recover N released during the closed composting process of laying hen manure. The ammonia (NH3) capture process was performed using two different systems over a period of 44 days: the first system (S1) consisted of 120 m of an expanded polytetrafluoroethylene (ePTFE) membrane installed inside a 3.7 m3 portable, closed aerobic composter with forced ventilation; the second system (S2) consisted of 474 m of an ePTFE membrane placed inside as an external module designed for NH3 capture, connected to a closed aerobic composter through a pipe. In both cases, a 1 N H2SO4 acidic NH3 capture solution was circulated inside the membranes at a flow rate of 2.1 L·h−1. The amount of total ammonia nitrogen (TAN) recovered was similar in the two systems (0.61 kg in S1 and 0.65 kg in S2) due to the chosen membrane surface areas, but the TAN recovery rate was six times higher in system S1 (6.9 g TAN·m−2·day−1) than in system S2 (1.9 g TAN·m−2·day−1) due to the presence of a higher NH3 concentration in the air in contact with the membrane. Given that the NH3 concentration in the atmosphere of the membrane compartment directly influences the NH3 capture, better performance of the GPM recovery system may be attained by installing it directly inside the closed aerobic composters. Regardless of the chosen configuration, this technology allows N recovery as a stable and concentrated 1.4% N ammonium salt solution, which can be used for fertigation. The presented GPM systems may be used in community composting systems with low volumes of waste to be treated or in livestock facilities that have implemented best available techniques such as solid–liquid separation or anaerobic digestion, provided that the use of GPM technology in combination with these techniques also contributes to odor mitigation and improves biogas yields.


2021 ◽  
Vol 905 (1) ◽  
pp. 012050
Author(s):  
A K Setyawati ◽  
S Marwanti ◽  
M T Sundari

Abstract Native chicken egg is one of the animal protein sources to meet the need for protein. This study analyzes what factors affect the demand for native chicken eggs in Surakarta City and examine the elasticity of demand for native chicken eggs in Surakarta City. The primary method of research is descriptive. This research was conducted in Harjodaksino Market, Jongke Market, Legi Market, Gede Market, dan Sangkrah Market. This study carried out the research location selection purposively and used 100 respondent end consumers of native chicken eggs. The data analysis method used is multiple linear regression. The result showed that factors that affect the demand for native chicken eggs in Surakarta City are native chicken eggs prices, laying hen eggs prices, duck egg prices, native chicken meat prices, broiler chicken meat prices, and rice prices. Price elasticity indicates that the demand for native chicken eggs is elastic. Cross elasticity showed that laying hen eggs, duck eggs, and native chicken meat are substitute goods for native chicken eggs. In contrast, broiler chicken meat dan rice is complementary good for native chicken eggs.


Sign in / Sign up

Export Citation Format

Share Document