Petroleum potential and depositional environments of Middle Jurassic coals and non-marine deposits, Danish Central Graben, with special reference to the Søgne Basin

Author(s):  
Henrik I. Petersen ◽  
Jan Andsbjerg ◽  
Jørgen A. Bojesen-Koefoed ◽  
Hans P. Nytoft ◽  
Per Rosenberg

NOTE: This monograph was published in a former series of GEUS Bulletin. Please use the original series name when citing this monograph. For example: Petersen, H. I., Andsbjerg, J., Bojesen-Koefoed, J. A., Nytoft, H. P., & Rosenberg, P. (1998). Petroleum potential and depositional environments of Middle Jurassic coals and non-marine deposits, Danish Central Graben, with special reference to the Søgne Basin. Geology of Denmark Survey Bulletin, 36, 1-80. https://doi.org/10.34194/dgub.v36.5022 _______________ New data from five wells in the Søgne Basin, Danish Central Graben of the North Sea - West Lulu-1, West Lulu-3, Lulu-1, Amalie-1 and Cleo-1 - together with previously released data from the West Lulu-2 well, show that the cumulative thickness of the Bryne Formation coal seams decreases towards the palaeo-shoreline from 5.05 m to 0.60 m, and that the seams have varying extents. Their overall organic petrographic and geochemical composition reflects the palaeoenvironmental conditions in the precursor mires, in particular the rate of rise in the water table, principally related to the relative rise in sea level, and the degree of marine influence. Laterally towards the palaeo-shoreline, all coal seams have increased proportions of C27 steranes and higher C35-homohopane indices suggesting stronger marine influence on the coastal reaches of the ancient mires. In each well it is also observed that coal seams formed during accelerated relative sea-level rise (T-seams) are characterised by higher contents of sterane C27 and higher C35-homohopane indices than seams formed during slower rates of base-level rise (R-seams). The most landward and freshwater-influenced parts of the seams have higher proportions of sterane C29 and the highest Pr/Ph ratios. The coals, with respect to thermal maturity, are well within the oil window, except in the Amalie-1 well where they are more mature. The largest average hydrogen indices and thermally extracted and generated bitumen yields are obtained from the T-seams. However, generally an increase in the hydrogen index is recorded in a seaward direction for all seams. Multivariate regression analysis demonstrates that collotelinite, telinite, the vitrinite maceral group, vitrinite-rich microlithotypes and the TOC content have a significant positive influence on the remaining generative potential represented by S2. Pyrolysis-gas chromatography reveals that during maturation the coals will generate from 72.4 to 82.0% oil-like components and only 18.0 to 27.6% gas. However, this does not necessarily imply that all of these oil-like components can be expelled to form a crude oil accumulation. Distribution of C27–29 regular steranes shows good correlation between extracts of Bryne Formation coals and oils/condensates present in Bryne Formation sandstones. The sum of evidence indicates that the coals in the Søgne Basin have generated and are still capable of generating liquid and gaseous petroleum, but with respect to petroleum generation potential, they are not as good as the documented oil-prone Middle Jurassic coals from North-East Greenland and Tertiary coals from Asia. Mudstones intercalated with the Bryne Formation coals have a similar or lower generative potential as the coals. In areas outside the Søgne Basin, the coastal plain deposits of the Central Graben Group contain predominantly terrestrial-derived kerogen type III or IIb. The thermal maturity of the organic matter ranges from close to or within the peak oil generation range in the oil window (Alma-1x, Anne-3a and M-8 well) to the late oil window (Elly-3 and Falk-1 wells) or close to the end of the oil window (Skjold Flank-1 well). Only a limited generative potential remains in Elly-3, but the kerogen may initially have possessed a good petroleum potential. In the Falk-1 well, a good generative capacity still remains. The kerogen in Skjold Flank-1 may possess the capability to generate condensate and gas, whereas the organic matter in the Alma-1x, Anne-3a and M-8 wells generally exhibits a poor petroleum generative potential.  

1994 ◽  
Vol 33 ◽  
pp. 1-55
Author(s):  
Henrik Ingermann Petersen

Five cored wells located in the Fennoscandian Border Zone in the Øresund area, Denmark, encountered Lower or Middle Jurassic coal-bearing strata; the coal seams are Lignite to Sub-bituminous A/High Vol. Bituminous C in rank. A number of shallowing-upward units are recognized in the five wells. Each unit is capped by a coal seam. Correlation of these shallowing-upward units between wells is difficult on the basis of available biostratigraphy and log data. Seven of the coal seams result from establishment of peatforming conditions due to infilling of freshwater lakes, whereas the last two of the coal seams result from peat accumulation on top of restricted brackish lagoon or bay sediments. However, only one of the latter two seams accumulated in an environment influenced by saline water. Hence, the investigated coals represent almost entirely freshwater peat-forming environments. Three main types of environments are defined: 1) Type 1 is a sparsely vegetated open water swamp; it is represented by a limnic facies. The deposit is typically a carbonaceous claystone with a high content of allochthonous organic matter; 2) Type 2 is a densely vegetated rheotrophic, nutrient-rich and anoxic swamp; it is represented by a limnotelmatic to telmatic facies. The coal has a very high content of humified organic matter; 3) Type 3, subdivided into the types 3a and 3b, is the driest environment of the three types. Type 3a is a desiccated ombrotrophic raised bog represented by a terrestrial facies. It is strongly influenced by a fluctuating watertable. The coals contain a high content of inertinite that generally shows a low reflectance. Type 3b is a mesotrophic to ombrotrophic domed bog; the environment alternates between dry oxidizing conditions and wet conditions. It is represented by a telmatic to terrestrial facies. In general, the three types of environments form ecosystems characterized by the groundwater influence, nutrient supply, and vegetation. Successions representing the hydrological evolution towards drier conditions due to vertical peat accretion are recognized in some of the seams. The vegetation was small-statured and consisted of a prominent herbaceous type of flora, shrub-like plants, smaller arboreous plants and, to a lesser extent, larger plants.


2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


1999 ◽  
Vol 39 (1) ◽  
pp. 322 ◽  
Author(s):  
G.M. Carlsen ◽  
S.N. Apak ◽  
K.A.R. Ghori K. Grey ◽  
M.K. Stevens

The sedimentology, palaeontology and geochemistry of Neoproterozoic, organic-rich, clastic and related carbonate deposits in Western Australia provide new insights into the first-order depositional controls on hydrocarbon source rocks in the Neoproterozoic. Organic facies are correlated with depositional facies, revealing the impact of organic productivity and transport of organic rich sediments on the accumulation of organic matter in different depositional environments. Sedimentation is largely limited to ramp, platform, shoal, lagoon and sabkha environments.Growth of benthic organisms in the photic zone was the primary process controlling the production of organic matter in the ramp-shoreline system of the Kanpa Formation. Storms and floods were the primary mechanism for moving organic rich sediments into dysoxic and anoxic depositional environments. Variations in organic facies are indicated by: 1) changes in the palynomorph assemblages, particularly the increase in acritarchs within shallow-water ramp facies and cyanobacterial filaments in quiet-water sediments; 2) organic-rich laminae, containing abundant cyanobacterial filaments and mat material; and 3) the oxidation state of preserved organic remains.Periods of high organic growth rates or periods of mass mortality may have led to the development of an anoxic zone at the water-sediment interface. In the shoal and lagoonal settings, higher rates of clastic sediment dilution combined with oxygenated conditions resulted in lower TOC and hydrogen depleted organic facies.Condensed sections overlying stromatolitic dolomites represent the most effective organic facies of all of the potential source laminae sampled in Empress–IA. Most of the Officer Basin succession is currently within the oil-generating window and hydrocarbon shows encourage further exploration.


2007 ◽  
Vol 22 (11) ◽  
pp. 2456-2485 ◽  
Author(s):  
Leszek Marynowski ◽  
Michał Zatoń ◽  
Bernd R.T. Simoneit ◽  
Angelika Otto ◽  
Mariusz O. Jędrysek ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Aboglila S

Drill cutting samples (n = 92) from the Devonian Awaynat Wanin Formation and Silurian Tanezzuft Formation, sampled from three wells F1, G1 and H1, locate in the northern edge of the Murzuq basin (approximately 700 kilometers south of Tripoli). The studied samples were analyzed in the objective of their organic geochemical assessment such as the type of organic matter, depositional conditions and thermal maturity level. A bulk geochemical parameters and precise biomarkers were estimated, using chromatography-mass spectrometry (GC-MS) to reveal a diversity of their geochemical characterizations. The rock formations are having varied organic matter contents, ranged from fair to excellent. The total organic carbon (TOC) reached about 9.1 wt%, ranging from 0.6 to 2.93 wt% (Awaynat Wanin), 0.5 to 2.54 wt% (Tanezzuft) and 0.52 to 9.1 wt% (Hot Shale). The cutting samples are ranged oil-prone organic matter (OM) of hydrogen index (HI) ranged between 98 –396 mg HC/g TOC, related kerogen types are type II and II/III, with oxygen index (OI): 6 - 190 with one sample have value of 366 mg CO2/g. Thermal maturity of these source rocks is different, ranging from immature to mature and oil window in the most of Tanezzuft Formation and Hot Shale samples, as reflected from the production index data (PI: 0.08 - 034). Tmax and vitrinite reflectance Ro% data (Tmax: 435 – 454 & Ro%: 0.46 - 1.38) for the Awaynat Wanin. Biomarker ratios of specific hydrocarbons extracted from represented samples (n = 9), were moreover used to study thermal maturity level and depositional environments. Pristine/Phytane (Pr/Ph) ratios of 1.65 - 2.23 indicated anoxic to suboxic conditions of depositional marine shale and lacustrine source rock.


2021 ◽  
Vol 11 (10) ◽  
pp. 3663-3688
Author(s):  
Amin Tavakoli

AbstractThe aim of this study is to provide a better understanding of the type of source input, quality, quantity, the condition of depositional environment and thermal maturity of the organic matter from Bukit Song, Sarawak, which has not been extensively studied for hydrocarbon generation potential. Petrological and geochemical analyses were performed on 13 outcrop samples of the study location. Two samples, having type III and mixed kerogen, showed very-good-to-excellent petroleum potential based on bitumen extraction and data from Rock–Eval analysis. The rest of the samples are inert—kerogen type IV. In terms of thermal maturity based on vitrinite reflectance, the results of this paper are akin to previous studies done in the nearby region reported as either immature or early mature. Ph/n-C18 versus Pr/n-C17 data showed that the major concentration of samples is within peat coal environment, whilst two samples were associated with anoxic marine depositional environment, confirmed by maceral content as well. Macerals mainly indicated terrestrial precursors and, overall, a dominance of vitrinite. Quality of the source rock based on TOC parameter indicated above 2 wt. % content for the majority of samples. However, consideration of TOC and S2 together showed only two samples to have better source rocks. Existence of cutinite, sporinite and greenish fluorescing resinite macerals corroborated with the immaturity of the analysed coaly samples. Varying degrees of the bitumen staining existed in a few samples. Kaolinite and illite were the major clays based on XRD analysis, which potentially indicate low porosity. This study revealed that hydrocarbon-generating potential of Bukit Song in Sarawak is low.


Sign in / Sign up

Export Citation Format

Share Document