scholarly journals Reaction of Precambrian high-grade gneisses to mid-crustal ductile deformation in western Dove Bugt, North-East Greenland

1994 ◽  
Vol 162 ◽  
pp. 53-70
Author(s):  
B Chadwick ◽  
C.R.L Friend

Mid-crustal deformation of an Early Proterozoic high-grade gneiss complex in western Dove Bugt gave rise to at least two sets of nappes. Structures in mylonites in low-angle ductile shear zones associated with the younger nappes indicate north-easterly-directed displacements. The nappes and mylonites are folded by upright to inclined folds that verge north-west and which appear to be associated with decollements that dip south-east. Hornblende, sillimanite and anatectic partial melts that developed with the nappes, mylonites and younger folds show that deformation took place under amphibolite facies conditions. Several lines of evidence suggest that the younger nappes, the mylonites and the upright to inclined folds formed during the Caledonian orogeny. Some pre-Caledonian deformation may be represented by the oldest isoclinal folds. Numerous, small-scale, ductile extensional shear zones and more brittIe fractures that were superimposed across the Caledonian structures are believed to have formed during orogen-parallel collapse which may be related IO Devonian basin development farther south in central East Greenland. Younger fauIts and major joints are correlated with Carboniferous, Mesozoic and Tertiary basin development in North-East Greenland.

1991 ◽  
Vol 152 ◽  
pp. 103-111
Author(s):  
B Chadwick ◽  
C.R.L Friend

The complex range of orthogneisses has been subdivided on the basis of field characteristics into an old polyphase group, grey phlebitic gneisses, younger varieties of pink granitic gneisses that occur principally as extensive sheets, mixed orthogneisses with schlieric facies and undifferentiated gneisses with dioritic facies. Mafic sheets, now amphibolites, were emplaced at various stages in the evolution of the gneisses. Enclaves and sheets of supracrustal rocks include paragneisses, graphitic schists, marble, amphibolite and stratiform gabbroic complexes with anorthosite. Nappes with curvilinear hinge lines and belts of mylonite developed in high amphibolite conditions after emplacement of the sheets of pink granitic rocks (now variably deformed gneisses) into the old orthogneisses and supracrustal rocks. Principal displacements in the mylonites were shallow and N-directed. The nappes and mylonites were deformed by upright-inclined folds with north-westerly vergence. The nappes, mylonites and north-westerly verging folds are presumed to be Caledonian. N- and S-directed extensions indicated by small-scale ductile structures younger than the regional folding suggest that longitudinal collapse predominated in this part of the Caledonian belt in the south-west of Dove Bugt.


Author(s):  
John Grocott ◽  
Steven C. Davies

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Grocott, J., & Davies, S. C. (1999). Deformation at the southern boundary of the late Archaean Atâ tonalite and the extent of Proterozoic reworking of the Disko terrane, West Greenland. Geology of Greenland Survey Bulletin, 181, 155-169. https://doi.org/10.34194/ggub.v181.5123 _______________ The c. 2800 Ma old Atâ tonalite in the area north-east of Disko Bugt, West Greenland has largely escaped both Archaean and Proterozoic regional deformation and metamorphism. At its southern margin the tonalite is in contact with migmatitic quartz-feldspar-biotite gneiss and to the south both are progressively deformed in a high-grade gneiss terrain. The main deformation in the high grade gneisses involved hanging wall north-west displacements on a system of low-angle ductile shear zones that structurally underlie the Atâ tonalite. This shear zone system is folded by a large-scale, steeply inclined and north-west-trending antiform defined by the change in dip of planar fabrics. Minor folds related to the antiform are present and there is some evidence that folding was synkinematic with emplacement of a suite of c. 1750 Ma old ultramafic lamprophyre dykes. In much of the north-east Disko Bugt area it remains difficult to separate Archaean from Proterozoic structures and hence the extent of the Archaean terrane that has escaped intense Proterozoic reworking remains uncertain.


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


2020 ◽  
Vol 50 (1) ◽  
pp. 27-81 ◽  
Author(s):  
Stefan Bergman ◽  
Pär Weihed

AbstractTwo lithotectonic units (the Norrbotten and Överkalix units) occur inside the Paleoproterozoic (2.0–1.8 Ga) Svecokarelian orogen in northernmost Sweden. Archean (2.8–2.6 Ga and possibly older) basement, affected by a relict Neoarchean tectonometamorphic event, and early Paleoproterozoic (2.5–2.0 Ga) cover rocks constitute the pre-orogenic components in the orogen that are unique in Sweden. Siliciclastic sedimentary rocks, predominantly felsic volcanic rocks, and both spatially and temporally linked intrusive rock suites, deposited and emplaced at 1.9–1.8 Ga, form the syn-orogenic component. These magmatic suites evolved from magnesian and calc-alkaline to alkali–calcic compositions to ferroan and alkali–calcic varieties in a subduction-related tectonic setting. Apatite–Fe oxide, including the world's two largest underground Fe ore mines (Kiruna and Malmberget), skarn-related Fe oxide, base metal sulphide, and epigenetic Cu–Au and Au deposits occur in the Norrbotten lithotectonic unit. Low- to medium-pressure and variable temperature metamorphic conditions and polyphase Svecokarelian ductile deformation prevailed. The general northwesterly or north-northeasterly structural grain is controlled by ductile shear zones. The Paleotectonic evolution after the Neoarchean involved three stages: (1) intracratonic rifting prior to 2.0 Ga; (2) tectonic juxtaposition of the lithotectonic units during crustal shortening prior to 1.89 Ga; and (3) accretionary tectonic evolution along an active continental margin at 1.9–1.8 Ga.


2020 ◽  
Author(s):  
Christoph Schrank

<p>About 50 years ago, John Ramsay and colleagues established the thorough foundation for the field-scale observational and mathematical description of the structures, deformation, and kinematics in ductile shear zones. Since then, these probably most important instabilities of the ductile lithosphere enjoyed an almost explosive growth in scientific attention. It is perhaps fair to say that this tremendous research effort featured four main themes:</p><p> </p><p>[1] The historic scientific nucleus – quantification of shear-zone geometry, strain and associated kinematic history from field observations</p><p> </p><p>[2] Qualitative and quantitative analysis of microphysical deformation mechanisms in the field and the laboratory</p><p> </p><p>[3] Shear-zone rheology</p><p> </p><p>[4] The development of physically consistent mathematical models for shear zones, mainly using continuum mechanics.</p><p> </p><p>In concert, these four cornerstones of shear-zone research enabled tremendous progress in our understanding of why and how ductile shear zones form. So, what are some of the outstanding problems?</p><p> </p><p>A truly comprehensive model for ductile shear zones must account for the vast range of length and time scales involved, each easily covering ten orders of magnitude, as well as the associated intimate coupling between thermal, hydraulic, mechanical, and chemical processes. The multi-scale and multi-physics nature of ductile shear zones generates scientific challenges for all four research themes named above. This presentation is dedicated to highlighting exciting challenges in themes 2, and 3 and 4.</p><p> </p><p>In the microanalytical arena [2], the nano-scale is an exciting new frontier, especially when it comes to the interplay between metamorphism and ductile deformation. The nano-frontier can be tackled with new synchrotron methods. I showcase some applications to fossil shear-zone samples and discuss opportunities for in-situ experiments. In the domain of rheology [3], I present some simple experiments with strain-softening materials and field observations that support the notion: transient rheological behaviour is very important for shear localisation. In the modelling domain [4], some recent examples for the intriguing physical consequences predicted by new multi-physics and cross-scale coupling terms in ductile localisation problems are illustrated.</p>


2006 ◽  
Vol 143 (4) ◽  
pp. 431-446 ◽  
Author(s):  
C. SARTINI-RIDEOUT ◽  
J. A. GILOTTI ◽  
W. C. McCLELLAND

The North-East Greenland eclogite province is divided into a western, central and eastern block by the sinistral Storstrømmen shear zone in the west and the dextral Germania Land deformation zone in the east. A family of steep, NNW-striking dextral mylonite zones in the Danmarkshavn area are geometrically and kinematically similar to the ductile Germania Land deformation zone, located 25 km to the east. Amphibolite facies deformation at Danmarkshavn is characterized by boudinage of eclogite bodies within quartzofeldspathic host gneisses, pegmatite emplacement into the boudin necks and subsequent deformation of pegmatites parallel to gneissosity, a widespread component of dextral shear within the gneisses, and localization of strain into 10–50 m thick dextral mylonite zones. The gneisses and concordant mylonite zones are cut by a swarm of weakly to undeformed, steeply dipping, E–W-striking pegmatitic dykes. Oscillatory-zoned zircon cores from two boudin neck pegmatites give weighted mean 206Pb/238U sensitive, high mass resolution ion microprobe (SHRIMP) ages of 376 ± 5 Ma and 343 ± 7 Ma. Cathodoluminescence images of these zircons reveal complex additional rims, with ages from ranging from c. 360 to 320 Ma. Oscillatory-zoned, prismatic zircons from two late, cross-cutting pegmatites yield weighted mean 206Pb/238U SHRIMP ages of 343 ± 5 Ma and 332 ± 3 Ma. Zircons from the boudin neck pegmatites record a prolonged growth history, marked by fluid influx, during amphibolite facies metamorphism beginning at c. 375 Ma. The cross-cutting pegmatites show that dextral deformation in the gneisses and ductile mylonite zones had stopped by c. 340 Ma. Ultrahigh-pressure metamorphism in the eastern block at 360 Ma requires that the Greenland Caledonides were in an overall contractional plate tectonic regime. This, combined with 20% steep amphibolite facies lineations in the eclogites, gneisses and mylonites suggests that dextral transpression may have been responsible for a first stage of eclogite exhumation between 370 and 340 Ma.


1994 ◽  
Vol 162 ◽  
pp. 129-133
Author(s):  
A.P Nutman ◽  
F Kalsbeek

SHRIMP U-Pb isotope data on zircon crystals from a gneiss sample near Danmarkshavn, where the presence of Archaean rocks has earlier been documented, show that the rock has undergone a complex history of igneous and metamorphic zircon growth. At least three generations of zircon are present with ages of c. 3000 Ma, c. 2725 Ma and 1967 ±8 Ma (2 α). Apparently the rock was formed from an Archaean protolith which underwent high grade metamorphism during the early Proterozoic. Another sample from the easternmost exposures of the Caledonian basement, collected further north, yielded only early Proterozoic zircons with an age of 1963 ± 6 Ma. Together with a SHRIMP U-Pb zircon age of 1974 ± 17 Ma reported earlier, these results give evidence of a major igneous and metamorphic event in North-East Greenland about 1965 Ma ago.


Sign in / Sign up

Export Citation Format

Share Document