ductile deformation
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 134)

H-INDEX

38
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Francesco Mazzarini ◽  
Giovanni Musumeci ◽  
Samuele Papeschi

In their paper, Spiess et al. (2021) published structural, geochronological, and EBSD data on one of the monzogranite apophyses (Capo Bianco) of the buried Porto Azzurro Pluton (island of Elba, Northern Apennines, Italy), a pluton emplaced in the upper crust (P < 0.2 GPa; e.g. Papeschi et al., 2019). The authors publish a new U/Pb age of 6.4 ± 0.4 Ma, associated to the thermal peak, and a U-Th/He apatite age of 5.0 ± 0.6 Ma, related to a T of 60 °C. Spiess et al. (2021) use these ages to model the exhumation of the pluton controlled by the sub-horizontal Zuccale Fault, a fault with 6 km of horizontal displacement (ZF; Keller & Coward, 1996). Their structural dataset from the macro to the microscale and EBSD analyses relies on a small section (about 100 m wide) in the NE part of the Calamita Peninsula. Based on their documentation of (1) vertical dykes in the monzogranite, (2) vertical to low-angle top-to-the-E extensional faults, and (3) later NW-striking oblique faults, they interpret the Porto Azzurro Pluton as emplaced in an extensional to transcurrent tectonic setting, extrapolating their findings to the entire Eastern Elba.


2021 ◽  
Author(s):  
◽  
Bradley Mark Cosgrove

<p>Recent landslides from Wellington fill slopes have occurred as potentially hazardous, mobile debris flow-slides with long runouts during heavy rainstorms. Globally, catastrophic landslides from fill slopes are well documented, and in many instances their rapid failure and long runout suggests that their shear zones may be subject to liquefaction. Various generations of fill slopes throughout Wellington, and urban New Zealand, have been constructed using different practices and at variable scales. Despite this, very few laboratory based studies to determine how different fill slopes may perform during rainstorms have been attempted, as conventional laboratory tests do not adequately simulate the failure conditions in the slope.  This study uses a novel, dynamic back-pressured shear box to conduct rapid shear and specialist pore pressure inflation tests in order to replicate rainfall induced failure conditions in fill slopes with different consolidation histories and particle size characteristics. During each test, excess pore-water pressures and deformation were monitored until failure in order to determine the failure mechanisms operating.  This study demonstrates that the failure mechanisms in fill slopes are strongly influenced by the consolidation history and particle size characteristics of the shear zone materials. In over-consolidated and fine grained (< 0.4 mm) fills where cohesion is present, brittle failure was observed. In these materials, failures occur more rapidly but require much higher pore-water pressures to initiate. Conversely, normally-consolidated fill slopes constructed from coarser material (0.4 - 2 mm) fail through ductile deformation processes, which typically initiate at much lower pore-water pressures but result in a less rapid slope failure. Although liquefaction was not observed, excess pore-water pressures can be generated during rapid shearing, indicating that liquefaction could occur after a landslide has initiated in conditions where excess pore-water pressures are unable to dissipate away from the shear zone. These results provide new insights into the types of failure that may be anticipated from different fill slopes, the hazards they may pose and potential mitigation measures that could be implemented.</p>


2021 ◽  
Author(s):  
◽  
Bradley Mark Cosgrove

<p>Recent landslides from Wellington fill slopes have occurred as potentially hazardous, mobile debris flow-slides with long runouts during heavy rainstorms. Globally, catastrophic landslides from fill slopes are well documented, and in many instances their rapid failure and long runout suggests that their shear zones may be subject to liquefaction. Various generations of fill slopes throughout Wellington, and urban New Zealand, have been constructed using different practices and at variable scales. Despite this, very few laboratory based studies to determine how different fill slopes may perform during rainstorms have been attempted, as conventional laboratory tests do not adequately simulate the failure conditions in the slope.  This study uses a novel, dynamic back-pressured shear box to conduct rapid shear and specialist pore pressure inflation tests in order to replicate rainfall induced failure conditions in fill slopes with different consolidation histories and particle size characteristics. During each test, excess pore-water pressures and deformation were monitored until failure in order to determine the failure mechanisms operating.  This study demonstrates that the failure mechanisms in fill slopes are strongly influenced by the consolidation history and particle size characteristics of the shear zone materials. In over-consolidated and fine grained (< 0.4 mm) fills where cohesion is present, brittle failure was observed. In these materials, failures occur more rapidly but require much higher pore-water pressures to initiate. Conversely, normally-consolidated fill slopes constructed from coarser material (0.4 - 2 mm) fail through ductile deformation processes, which typically initiate at much lower pore-water pressures but result in a less rapid slope failure. Although liquefaction was not observed, excess pore-water pressures can be generated during rapid shearing, indicating that liquefaction could occur after a landslide has initiated in conditions where excess pore-water pressures are unable to dissipate away from the shear zone. These results provide new insights into the types of failure that may be anticipated from different fill slopes, the hazards they may pose and potential mitigation measures that could be implemented.</p>


2021 ◽  
pp. 104498
Author(s):  
Richard Spiess ◽  
Antonio Langone ◽  
Alfredo Caggianelli ◽  
Finlay M. Stuart ◽  
Martina Zucchi ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jingzhou Yang ◽  
Hairui Gao ◽  
Dachen Zhang ◽  
Xia Jin ◽  
Faqiang Zhang ◽  
...  

Additively manufactured trabecular tantalum (Ta) scaffolds are promising bone repair materials for load-bearing applications due to their good pore interconnectivity. However, a thorough mechanical behavior evaluation is required before conducting animal studies and clinical research using these scaffolds. In this study, we revealed the compressive mechanical behavior and material failure mechanism of trabecular tantalum scaffolds by compression testing, finite element analysis (FEA), and scanning electron microscopy (SEM). Trabecular tantalum scaffolds with porosities of 65%, 75%, and 85% were fabricated by laser powder bed fusion-based additive manufacturing. Porosity has a significant effect on their compressive mechanical properties. As the porosity decreased from 85% to 65%, the compressive yield strength and elastic modulus increased from 11.9 MPa to 35.7 MPa and 1.1 GPa to 3.0 GPa, respectively. Compression testing results indicate that trabecular tantalum scaffolds demonstrate ductile deformation and excellent mechanical reliability. No macroscopic cracks were found when they were subjected to strain up to 50%. SEM observations showed that material failure results from tantalum strut deformation and fracture. Most microcracks occurred at conjunctions, whereas few of them appear on the struts. FEA-generated compressive stress distribution and material deformation were consistent with experimental results. Stress concentrates at strut conjunctions and vertical struts, where fractures occur during compression testing, indicating that the load-bearing capability of trabecular tantalum scaffolds can be enhanced by strengthening strut conjunctions and vertical struts. Therefore, additively manufactured trabecular tantalum scaffolds can be used in bone tissue reconstruction applications.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tianzuo Wang ◽  
Linxiang Wang ◽  
Fei Xue ◽  
Mengya Xue ◽  
Hangcheng Xie ◽  
...  

Liquid nitrogen (LN2), which can greatly improve the efficiency of hot dry rock (HDR) mining, is commonly used as a cooling material in the enhanced geothermal system (EGS). Physical property, triaxial compression, and permeability tests were undertaken on treated granite samples, for a better scientific understanding of the effect of the LN2 cooling method on the mechanical and permeability properties of the rocks after heat treatment. The experimental results indicated that the physical properties of the treated granite change significantly, such as the density and wave velocity are substantially reduced. Meanwhile, with the increase of treatment temperature, the macroscopic cracks on its surface are gradually generated and the volume is expanded clearly. In addition, the surface wettability of granite gradually increases with increasing temperature. Compared with the air/water cooling methods, under LN2 cooling condition, the mechanical properties decrease markedly. When the temperature exceeds 600°C, the granite strength decreases significantly to only 56.16% of the reference value. The deformation properties also change significantly, with a final strain of about 3% at failure for a sample at 800°C, showing an obvious ductile deformation characteristic. Further, an appreciable correlation also exists between the initial permeability of granite and temperature. Once the temperature exceeds 200°C, the increase in temperature contributes to the increase in initial permeability. In addition to the effect of temperature, the increase in load also leads to a change in the permeability coefficient. When the temperature reaches 600°C, the permeability of granite first decreases and then increases with the increases in axial stress. The results of this paper are valuable in understanding the effect of thermal shock by LN2 on the fracturing efficiency and permeability characteristics of dry hot rocks.


2021 ◽  
Vol 51 (3) ◽  
pp. 245-263
Author(s):  
Jana DÉREROVÁ ◽  
Miroslav BIELIK ◽  
Dominika GODOVÁ ◽  
Andrej MOJZEŠ

We used 2D integrated geophysical modelling approach to calculate the temperature distribution in the lithosphere along profile VII passing through the Eastern Carpathians. With assigned rheological parameters of rocks and obtained temperature field, we derived the rheological model of the lithosphere along the studied profile. We have calculated the strength distribution in the lithosphere, based on the brittle and ductile deformation, for compressional and extensional regimes and the vertically integrated strength along the profile. To illustrate the strength distribution in different tectonic units, we have calculated the yield strength envelopes for chosen lithospheric columns. Ours results show that the dominant regime is compressional and the largest strength occurs on the boundary between the upper and lower crust. Along the studied profile, the strength decreases from its high values in the European platform towards its minimum in the Trans-European Suture Zone (TESZ). In the Eastern Carpathians, the strength increases, reaches two maxima, the first in the Outer Eastern Carpathians, and the second in the Inner Eastern Carpathians, where the highest values of strength can be observed. Another local maximum along the profile can be observed in the Apuseni Mountains, while the minimal strength is observed in the Transylvanian Basin. The diverse rheological behaviour of studied tectonic units seems to be in accordance with their lithospheric structure and tectonics.


2021 ◽  
Author(s):  
Anne Ewing Rassios ◽  
Dina Ghikas ◽  
Anna Batsi ◽  
Petros Koutsovitis ◽  
Evangelos Tzamos ◽  
...  

ABSTRACT The “petrological Moho” recognized in the Jurassic Vourinos Ophiolite (northern Greece) was the first “crust-mantle” boundary described within a fossil oceanic lithosphere. Early observations suggested a Cenozoic brittle-field block rotation of the petrological Moho transition area resulting in an oblique clockwise rotation of ∼100°, but a brittle fault system responsible for the mechanism of this rotation was never located. A modern interpretation of research dating from the 1960s to the present documents the occurrence of a diverse set of ductile structures overprinting this primary intra-oceanic feature. The following observations from our original “Moho” studies in the Vourinos complex are still pertinent: the contact between the upper mantle units and the magmatic crustal sequence is in situ and intrusional in nature; high-temperature intragranular ductile deformation (mantle creep at temperatures from around 1200 °C down to ∼900 °C) fabrics terminate at the crust-mantle boundary; the overlying oceanic crustal rocks display geochemical fractionation patterns analogous to crustal rocks in the in situ oceanic lithosphere. Since these original studies, however, understanding the mechanisms of ductile deformation and ridge crest processes have advanced, and hence we can now interpret the older data and recent observations in a new paradigm of oceanic lithosphere formation. Our major interpretational breakthrough includes the following phenomena: lower temperature, intergranular deformation of ∼900 °C to 700 °C extends from the upper mantle tectonites up into the lower crustal cumulate section; the origin of mineral lineations within adcumulate crustal rocks as remnants of ductile deformation during early phases of magmatic crystallization; syn-magmatic folding and rotation of the cumulate section; the tectonic significance of flaser gabbro and late gabbroic intrusions in the crustal sequence; and the relevance and significance of a cumulate troctolite unit within the crustal sequence. These observations collectively point to an important process of a ductile-field, syn-magmatic rotation of the Moho transition area. The most plausible mechanism explaining such a rotation is proto-transform faulting deformation near the ridge crest. By recognizing and distinguishing structures that resulted from such initial rotational deformation in the upper mantle peridotites of ophiolites, future field-based structural, petrographic, and petrological studies can better document the mode of the initiation of oceanic transform faults.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3181
Author(s):  
Ranran Jian ◽  
Weimin Yang ◽  
Mohini Sain ◽  
Chuanwei Zhang ◽  
Lupeng Wu

In the present work, the ductile formation mechanism of a newly proposed torsion configuration has been investigated. One of the unique attributes of this paper is the first-time disclosure of the design and fabrication of a novel prototype screw with torsional flow character validating the orthogonal test model experimentally. The torsional spiral flow patterns that occurred in the torsion channel cause a ductile deformation of polymer in the form of a spiral, which in turn enhances the radial convection, achieving an effective mass transfer of material from the top region to the bottom region and vice versa. Furthermore, the characteristic parameters of torsion configuration have a significant influence on the plasticizing and melting capability of polymer. By range analysis and weight matrix analysis, the best factor and level combination was obtained. Results indicated that the aspect ratio of the torsion channel is almost equal to 1, and the plasticizing and melting capability of polymer is optimal. This novel design innovation offers a paradigm shift in the energy-efficient plasticization of polymer compounds.


Sign in / Sign up

Export Citation Format

Share Document