ON OPTIMAL CONTROL OF A STOCHASTIC EQUATION WITH A FRACTIONAL WIENER PROCESS

2021 ◽  
Vol 6 ◽  
pp. 5-12
Author(s):  
Pavel Knopov ◽  
◽  
Tatyana Pepelyaeva ◽  
Sergey Shpiga ◽  
◽  
...  

In recent years, a new direction of research has emerged in the theory of stochastic differential equations, namely, stochastic differential equations with a fractional Wiener process. This class of processes makes it possible to describe adequately many real phenomena of a stochastic nature in financial mathematics, hydrology, biology, and many other areas. These phenomena are not always described by stochastic systems satisfying the conditions of strong mixing, or weak dependence, but are described by systems with a strong dependence, and this strong dependence is regulated by the so-called Hurst parameter, which is a characteristic of this dependence. In this article, we consider the problem of the existence of an optimal control for a stochastic differential equation with a fractional Wiener process, in which the diffusion coefficient is present, which gives more accurate simulation results. An existence theorem is proved for an optimal control of a process that satisfies the corresponding stochastic differential equation. The main result was obtained using the Girsanov theorem for such processes and the existence theorem for a weak solution for stochastic equations with a fractional Wiener process.

2020 ◽  
Vol 28 (1) ◽  
pp. 1-18
Author(s):  
Dahbia Hafayed ◽  
Adel Chala

AbstractIn this paper, we are concerned with an optimal control problem where the system is driven by a backward doubly stochastic differential equation with risk-sensitive performance functional. We generalized the result of Chala [A. Chala, Pontryagin’s risk-sensitive stochastic maximum principle for backward stochastic differential equations with application, Bull. Braz. Math. Soc. (N. S.) 48 2017, 3, 399–411] to a backward doubly stochastic differential equation by using the same contribution of Djehiche, Tembine and Tempone in [B. Djehiche, H. Tembine and R. Tempone, A stochastic maximum principle for risk-sensitive mean-field type control, IEEE Trans. Automat. Control 60 2015, 10, 2640–2649]. We use the risk-neutral model for which an optimal solution exists as a preliminary step. This is an extension of an initial control system in this type of problem, where an admissible controls set is convex. We establish necessary as well as sufficient optimality conditions for the risk-sensitive performance functional control problem. We illustrate the paper by giving two different examples for a linear quadratic system, and a numerical application as second example.


2014 ◽  
Vol 12 (11) ◽  
Author(s):  
Bakarime Diomande ◽  
Lucian Maticiuc

AbstractOur aim is to study the following new type of multivalued backward stochastic differential equation: $$\left\{ \begin{gathered} - dY\left( t \right) + \partial \phi \left( {Y\left( t \right)} \right)dt \ni F\left( {t,Y\left( t \right),Z\left( t \right),Y_t ,Z_t } \right)dt + Z\left( t \right)dW\left( t \right), 0 \leqslant t \leqslant T, \hfill \\ Y\left( T \right) = \xi , \hfill \\ \end{gathered} \right.$$ where ∂φ is the subdifferential of a convex function and (Y t, Z t):= (Y(t + θ), Z(t + θ))θ∈[−T,0] represent the past values of the solution over the interval [0, t]. Our results are based on the existence theorem from Delong & Imkeller, Ann. Appl. Probab., 2010, concerning backward stochastic differential equations with time delayed generators.


2019 ◽  
Vol 27 (1) ◽  
pp. 9-25 ◽  
Author(s):  
Dahbia Hafayed ◽  
Adel Chala

Abstract In this paper, we deal with an optimal control, where the system is driven by a mean-field forward-backward doubly stochastic differential equation with jumps diffusion. We assume that the set of admissible control is convex, and we establish a necessary as well as a sufficient optimality condition for such system.


2011 ◽  
Vol 383-390 ◽  
pp. 972-975
Author(s):  
Ramzan Rezaeyan

Stochastic differential equations(SDEs) is fundamental for the modeling in engineering and science. The goal of this paper is study optimal control of the solution a SDE. We consider the optimal control for risky stocks stochastic model with using of the SDE.


2013 ◽  
Vol 14 (01) ◽  
pp. 1350007 ◽  
Author(s):  
HUIJIE QIAO ◽  
JINQIAO DUAN

After defining non-Gaussian Lévy processes for two-sided time, stochastic differential equations with such Lévy processes are considered. Solution paths for these stochastic differential equations have countable jump discontinuities in time. Topological equivalence (or conjugacy) for such an Itô stochastic differential equation and its transformed random differential equation is established. Consequently, a stochastic Hartman–Grobman theorem is proved for the linearization of the Itô stochastic differential equation. Furthermore, for Marcus stochastic differential equations, this topological equivalence is used to prove the existence of global random attractors.


2020 ◽  
Vol 52 (2) ◽  
pp. 523-562
Author(s):  
Phillippe Briand ◽  
Abir Ghannoum ◽  
Céline Labart

AbstractIn this paper, a reflected stochastic differential equation (SDE) with jumps is studied for the case where the constraint acts on the law of the solution rather than on its paths. These reflected SDEs have been approximated by Briand et al. (2016) using a numerical scheme based on particles systems, when no jumps occur. The main contribution of this paper is to prove the existence and the uniqueness of the solutions to this kind of reflected SDE with jumps and to generalize the results obtained by Briand et al. (2016) to this context.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1153
Author(s):  
Na Zhang ◽  
Guangyan Jia

In this paper, we introduce the Lie-point symmetry method into backward stochastic differential equation and forward–backward stochastic differential equations, and get the corresponding deterministic equations.


2015 ◽  
Vol 5 (4) ◽  
pp. 387-404 ◽  
Author(s):  
Jie Yang ◽  
Weidong Zhao

AbstractConvergence analysis is presented for recently proposed multistep schemes, when applied to a special type of forward-backward stochastic differential equations (FB-SDEs) that arises in finance and stochastic control. The corresponding k-step scheme admits a k-order convergence rate in time, when the exact solution of the forward stochastic differential equation (SDE) is given. Our analysis assumes that the terminal conditions and the FBSDE coefficients are sufficiently regular.


2020 ◽  
Vol 61 ◽  
pp. C1-C14
Author(s):  
Hidekazu Yoshioka ◽  
Yumi Yoshioka

We propose and analyse a new stochastic competing two-species population dynamics model. Competing algae population dynamics in river environments, an important engineering problem, motivates this model. The algae dynamics are described by a system of stochastic differential equations with the characteristic that the two populations are competing with each other through the environmental capacities. Unique existence of the uniformly bounded strong solution is proven and an attractor is identified. The Kolmogorov backward equation associated with the population dynamics is formulated and its unique solvability in a Banach space with a weighted norm is discussed. Our mathematical analysis results can be effectively utilized for a foundation of modelling, analysis, and control of the competing algae population dynamics. References S. Cai, Y. Cai, and X. Mao. A stochastic differential equation SIS epidemic model with two correlated brownian motions. Nonlin. Dyn., 97(4):2175–2187, 2019. doi:10.1007/s11071-019-05114-2. S. Cai, Y. Cai, and X. Mao. A stochastic differential equation SIS epidemic model with two independent brownian motions. J. Math. Anal. App., 474(2):1536–1550, 2019. doi:10.1016/j.jmaa.2019.02.039. U. Callies, M. Scharfe, and M. Ratto. Calibration and uncertainty analysis of a simple model of silica-limited diatom growth in the Elbe river. Ecol. Mod., 213(2):229–244, 2008. doi:10.1016/j.ecolmodel.2007.12.015. M. G. Crandall, H. Ishii, and P. L. Lions. User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc., 27(1):229–244, 1992. doi:10.1090/S0273-0979-1992-00266-5. N. H. Du and V. H. Sam. Dynamics of a stochastic Lotka–Volterra model perturbed by white noise. J. Math. Anal. App., 324(1):82–97, 2006. doi:10.1016/j.jmaa.2005.11.064. P. Grandits, R. M. Kovacevic, and V. M. Veliov. Optimal control and the value of information for a stochastic epidemiological SIS model. J. Math. Anal. App., 476(2):665–695, 2019. doi:10.1016/j.jmaa.2019.04.005. B. Horvath and O. Reichmann. Dirichlet forms and finite element methods for the SABR model. SIAM J. Fin. Math., 9(2):716–754, 2018. doi:10.1137/16M1066117. J. Hozman and T. Tichy. DG framework for pricing european options under one-factor stochastic volatility models. J. Comput. Appl. Math., 344:585–600, 2018. doi:10.1016/j.cam.2018.05.064. G. Lan, Y. Huang, C. Wei, and S. Zhang. A stochastic SIS epidemic model with saturating contact rate. Physica A, 529(121504):1–14, 2019. doi:10.1016/j.physa.2019.121504. J. L. Lions and E. Magenes. Non-homogeneous Boundary Value Problems and Applications (Vol. 1). Springer Berlin Heidelberg, 1972. doi:10.1007/978-3-642-65161-8. J. Lv, X. Zou, and L. Tian. A geometric method for asymptotic properties of the stochastic Lotka–Volterra model. Commun. Nonlin. Sci. Numer. Sim., 67:449–459, 2019. doi:10.1016/j.cnsns.2018.06.031. S. Morin, M. Coste, and F. Delmas. A comparison of specific growth rates of periphytic diatoms of varying cell size under laboratory and field conditions. Hydrobiologia, 614(1):285–297, 2008. doi:10.1007/s10750-008-9513-y. B. \T1\O ksendal. Stochastic Differential Equations. Springer Berlin Heidelberg, 2003. doi:10.1007/978-3-642-14394-6. O. Oleinik and E. V. Radkevic. Second-order Equations with Nonnegative Characteristic Form. Springer Boston, 1973. doi:10.1007/978-1-4684-8965-1. S. Peng. Nonlinear Expectations and Stochastic Calculus under Uncertainty: with Robust CLT and G-Brownian Motion. Springer-Verlag Berlin Heidelberg, 2019. doi:10.1007/978-3-662-59903-7. T. S. Schmidt, C. P. Konrad, J. L. Miller, S. D. Whitlock, and C. A. Stricker. Benthic algal (periphyton) growth rates in response to nitrogen and phosphorus: parameter estimation for water quality models. J. Am. Water Res. Ass., 2019. doi:10.1111/1752-1688.12797. Y. Toda and T. Tsujimoto. Numerical modeling of interspecific competition between filamentous and nonfilamentous periphyton on a flat channel bed. Landscape Ecol. Eng., 6(1):81–88, 2010. doi:10.1007/s11355-009-0093-4. H. Yoshioka, Y. Yaegashi, Y. Yoshioka, and K. Tsugihashi. Optimal harvesting policy of an inland fishery resource under incomplete information. Appl. Stoch. Models Bus. Ind., 35(4):939–962, 2019. doi:10.1002/asmb.2428.


1979 ◽  
Vol 22 (2) ◽  
pp. 129-138 ◽  
Author(s):  
Donald A. Dawson

The purpose of this article is to give an introduction to the study of a class of stochastic partial differential equations and to give a brief review of some of the recent developments in this field. This study has evolved naturally out of the theory of stochastic differential equations initiated in a pioneering paper of K. Itô [13]. In order to set this review in its appropriate setting we begin by considering a simple scalar stochastic differential equation.


Sign in / Sign up

Export Citation Format

Share Document