A Comprehensive Understanding on Sewability of Natural Biomaterial: An Insight on Process Optimization during Leather Manufacture

Author(s):  
Gladstone Christopher Jayakumar ◽  
K Phebe Aaron ◽  
K Krishnaraj

Leather is three-dimensional matrix possessing unique properties which makes it more comfortable for daily use. Garments made from leathers are preferred choice owing to their multifaceted properties as compared to textiles in the colder regions. In the present study, an attempt has been made to evaluate the influence of phenolic syntan and synthetic fatliquor on the sewability and physical properties of post tanned leathers. From the experimental results, it is observed that the concentration of phenolic syntan and fatliquor influences leather sewability. Optical microscopic images of leathers also show that they are more compact and tighter with higher percentage of syntan. The study provides an insight in understanding the optimum usage of post tanning chemicals for better sewing properties without affecting the leather matrix adversely.

1948 ◽  
Vol 158 (1) ◽  
pp. 230-235 ◽  
Author(s):  
W. A. P. Fisher

The “Stress Freezing” method is a useful means of solving problems of three-dimensional stress by photo-elasticity. The method makes use of the fact that some thermo-setting resins having photo-elastic properties possess considerable residual thermo-plasticity. When softened by heat they obey Hooke's law, though the Young's modulus is, of course, very much reduced. At a given temperature, the birefringence, as well as the strain, has been shown to be proportional to the stress. Both strain and birefringence persist after cooling and unloading, and even after slicing the model. This behaviour is illustrated by means of a simplified concept. In the U.S.A., Glyptal resin is used (Bakelite B.T. 61 893), but this material cannot be had in thicknesses greater than 1 inch. Glass-clear phenol-formaldehyde resin (Catalin 800), which gives a higher stress-optical coefficient, can be had in larger sizes. The properties of both materials are compared, and troubles such as “rind effect” are discussed. Some experimental results obtained with Catalin 800 are given by way of illustration. The suitability of this material has been under investigation for some time at the Royal Aircraft Establishment, Farnborough, and careful tests have shown that, when suitably cured, Catalin 800 can give reliable results, but that “rind effect” is still a serious drawback.


Author(s):  
Poonam Rani ◽  
MPS Bhatia ◽  
Devendra K Tayal

The paper presents an intelligent approach for the comparison of social networks through a cone model by using the fuzzy k-medoids clustering method. It makes use of a geometrical three-dimensional conical model, which astutely represents the user experience views. It uses both the static as well as the dynamic parameters of social networks. In this, we propose an algorithm that investigates which social network is more fruitful. For the experimental results, the proposed work is employed on the data collected from students from different universities through the Google forms, where students are required to rate their experience of using different social networks on different scales.


2009 ◽  
Vol 33 (10) ◽  
pp. 1079-1086 ◽  
Author(s):  
Nadezhda Stefanova ◽  
Galya Staneva ◽  
Diana Petkova ◽  
Teodora Lupanova ◽  
Roumen Pankov ◽  
...  

1941 ◽  
Vol 14 (3) ◽  
pp. 580-589 ◽  
Author(s):  
G. Gee ◽  
L. R. G. Treloar

Abstract As high elasticity is a property possessed only by substances of high molecular weight, it is of interest to enquire into the relation between the elastic properties of a highly elastic material such as rubber and its molecular weight. An investigation on these lines has been made possible through the work of Bloomfield and Farmer, who have succeeded in separating natural rubber into fractions having different average molecular weights. The more important physical properties of these fractions have been examined with the object of determining which of the properties are dependent on molecular weight and which are not. Fairly extensive observations were made on the fractions from latex rubber referred to as Nos. 2, 3 and 4 by Bloomfield and Farmer, and some less extensive observations were carried out on the less oxygenated portion of fraction No. 1 obtained from crepe rubber (called hereafter 1b) . Before considering these experimental results, and their relation to the molecular weights of the fractions, it will be necessary to refer briefly to the methods used for the molecular-weight determinations, and to discuss the significance of the figures obtained.


2014 ◽  
Vol 687-691 ◽  
pp. 3-6
Author(s):  
Da Ming Wang ◽  
Ming Zhe Li ◽  
Zhong Yi Cai

3D rolling is a novel technology for three-dimensional surface parts. In this process, by controlling the gap between the upper and lower forming rolls, the sheet metal is non-uniformly thinned in thickness direction, and the longitudinal elongation of the sheet metal is different along the transverse direction, which makes the sheet metal generate three-dimensional deformation. In this paper, the transition zones of spherical surface parts in 3D rolling process are investigated. Spherical surface parts with the same widths but different lengths are simulated in condition of the same roll gap, and their experimental results are presented. The forming precision of forming parts and the causes of transition zones in the head and tail regions are analyzed through simulated results. The simulated and experimental results show that the lengths of transition zones of spherical surfaces in the head and tail regions are fixed values in condition of the same sheet width and roll gap.


2013 ◽  
Vol 333-335 ◽  
pp. 1145-1150 ◽  
Author(s):  
Gao Yuan Dai ◽  
Zhi Cheng Li ◽  
Jia Gu ◽  
Lei Wang ◽  
Xing Min Li ◽  
...  

This paper proposes a fast GrowCut (FGC) algorithm and applies the new algorithm in three-dimensional (3D)kidney segmentation from computed tomography (CT) volume data. Users could mark the object of interest with different labels in CT slices.FGC propagates the labels using monotonically decreasing function and color features to derive an optimal cut for a given data in space. The color features play a great role in comparing with neighborhood cells. The experimental results clearly demonstrate the superiority of FGC in accuracy and speed.


Author(s):  
Demeng Che ◽  
Jacob Smith ◽  
Kornel F. Ehmann

The unceasing improvements of polycrystalline diamond compact (PDC) cutters have pushed the limits of tool life and cutting efficiency in the oil and gas drilling industry. However, the still limited understanding of the cutting mechanics involved in rock cutting/drilling processes leads to unsatisfactory performance in the drilling of hard/abrasive rock formations. The Finite Element Method (FEM) holds the promise to advance the in-depth understanding of the interactions between rock and cutters. This paper presents a finite element (FE) model of three-dimensional face turning of rock representing one of the most frequent testing methods in the PDC cutter industry. The pressure-dependent Drucker-Prager plastic model with a plastic damage law was utilized to describe the elastic-plastic failure behavior of rock. A newly developed face turning testbed was introduced and utilized to provide experimental results for the calibration and validation of the formulated FE model. Force responses were compared between simulations and experiments. The relationship between process parameters and force responses and the mechanics of the process were discussed and a close correlation between numerical and experimental results was shown.


2008 ◽  
Vol 105 (6) ◽  
pp. 1733-1740 ◽  
Author(s):  
Santhosh T. Jayaraju ◽  
Manuel Paiva ◽  
Mark Brouns ◽  
Chris Lacor ◽  
Sylvia Verbanck

We investigated the axial dispersive effect of the upper airway structure (comprising mouth cavity, oropharynx, and trachea) on a traversing aerosol bolus. This was done by means of aerosol bolus experiments on a hollow cast of a realistic upper airway model (UAM) and three-dimensional computational fluid dynamics (CFD) simulations in the same UAM geometry. The experiments showed that 50-ml boluses injected into the UAM dispersed to boluses with a half-width ranging from 80 to 90 ml at the UAM exit, across both flow rates (250, 500 ml/s) and both flow directions (inspiration, expiration). These experimental results imply that the net half-width induced by the UAM typically was 69 ml. Comparison of experimental bolus traces with a one-dimensional Gaussian-derived analytical solution resulted in an axial dispersion coefficient of 200–250 cm2/s, depending on whether the bolus peak and its half-width or the bolus tail needed to be fully accounted for. CFD simulations agreed well with experimental results for inspiratory boluses and were compatible with an axial dispersion of 200 cm2/s. However, for expiratory boluses the CFD simulations showed a very tight bolus peak followed by an elongated tail, in sharp contrast to the expiratory bolus experiments. This indicates that CFD methods that are widely used to predict the fate of aerosols in the human upper airway, where flow is transitional, need to be critically assessed, possibly via aerosol bolus simulations. We conclude that, with all its geometric complexity, the upper airway introduces a relatively mild dispersion on a traversing aerosol bolus for normal breathing flow rates in inspiratory and expiratory flow directions.


2021 ◽  
Vol 28 (02) ◽  
Author(s):  
Piotr Ługiewicz ◽  
Robert Olkiewicz

A class of bistochastic maps of three-dimensional matrix algebra which preserves a one-dimensional projector is studied.


Sign in / Sign up

Export Citation Format

Share Document