Journal of the American Leather Chemists Association
Latest Publications


TOTAL DOCUMENTS

97
(FIVE YEARS 97)

H-INDEX

0
(FIVE YEARS 0)

Published By University Of Cincinnati Press

0002-9726

Author(s):  
Ricardo Tournier ◽  
Fernando Lado

An appropriate tear strength is one of the main properties that concern customers and it is also a significant source of claims. The authors make a review of the production process, focusing on each step that can either damage the natural strength of collagen fibers or improve them, and therefore, the leather. The aim of this work, divided in Part 1 and 2, is to transfer field tannery experiences collected over 40 years of activity in different tanneries, to colleagues that are looking for world class leather production. Part 1 has been published in JALCA, 116 (12), 2021.


Author(s):  
Murshid Jaman Chowdury ◽  
Md. Abdur Razzaq ◽  
Md. Imran Biswas ◽  
Ariful Hai Quadery ◽  
Md. Tushar Uddin

Researchers around the world are in continuous endeavor to develop environment friendly tanning agent due to adverse effect of conventionally used chromium during leather tanning. Recent trend of tanning is thus heading to chrome-free and greener chemical processing options. Vegetable tanning is an exoteric leather processing technique because of their lower pollution load on the environment. Considering the inadequacy and high costing for the commercialized tannins, development of alternative tannins from locally available plants and their characterizations are important. In this research, the stem barks of Trema Orientalis (L.) were extracted at different temperatures employing water solvent with or without additives (sodium hydroxide or sodium sulphite) to attain phenolic-rich extractives. To ascertain appropriateness as a vegetable tanning agent, the obtained extracts were thereafter characterized in respect to yield, total phenolic content, tannin content and molecular structure. The extraction yield for all extracts improves and the quality remains nearly unchanged with temperature rising. The elevated concentration of chemical additives enhances the extraction yield but lessens the quality of extracts. In terms of extraction yield and the quality of extracts the best condition for extraction was discerned at 80°C with water solvent. This water extract has a decent extent of phenolic and tannin content of 266.13 mg Gallic acid equivalent/ gm of dry extract and 30.12 % respectively. The final extract exhibits excellent leather retanning tendency comparable to the commercial quebracho tannins.


Author(s):  
Josep M. Morera ◽  
Esther Bartolí ◽  
Rafael Fernández ◽  
Luisa F. Cabeza

Salting is the most common method to preserve hides and skins. However, this preservation system requires the generation of large amounts of contaminated salt, approximately three million tons per year. In recent years several researchers have suggested different methods for the short-term preservation of hides using plant-based formulations, which either minimize or even completely eliminate the use of salt in the process. In this work, the possibility of using wheat bran for this purpose was studied. Two methods of application (dry and aqueous solution) have been developed. They enable the preservation of hides for one month, reducing by half the salt used in the preservation stage without undermining the quality of the final leather. These two methods contribute to the improvement of the overall sustainability of the tanning process. With dry application, the use of salt is avoided and preservation occurs because the hide is dried. The application in aqueous solution (10% wheat bran) requires its previous hydrolysis and a minimum amount of salt (10ºBé). The preservation occurs because the acidity of the hide is increased.


Author(s):  
M. Sathish ◽  
R. Aravindhan ◽  
J. Raghava Rao

Chromium tanning finds a prominant place in leather manufacturing for permanent stabilization of hide/skin matrix. Though, it has multiple advantages in terms of high thermal stability, easy process and low cost etc., the current practice is not environmentally sustainable. Poor chromium exhaustion and TDS load generation are the major environmental threats of conventional chromium tanning systems. On the other hand, salt-free chromium tanning is identified as one of the efficient alternative approaches for hide/skin matrix stabilization. However, it has not been commercially practiced due to the several practical difficulties. In this work attempts have been made to develop a practically viable high-performance salt-free chromium tanning system using deliming liquor as tanning float and changing the order of addition of masking salt. The developed methodologies completely avoid the use of salt/basification process and it is suitable for all kinds of raw materials and tannery houses. Besides, the process enjoys 71-77% reduction in TDS load and the uptake of chromium is around 90%. The physical strength characteristics are on par with conventional process and the leathers exhibit good grain tightness and roundness. The developed methodologies are simple and do not require any specialty chemicals.     


Author(s):  
Fitsum Etefa Ahmed ◽  
Rotick K. Gideon

Cutting is the process in which goods or garment material are cut and converted into pattern shapes of the goods or garment components. There are two methods of Leather cutting, which are hand cutting and machine cutting. Hand cutting is done with the use of hand knife, cutting board and cutting patterns. Machine cutting can be done using semi-automatic cutting machines or fully-automatic cutting machines. Currently, in Ethiopia, different local and foreign investors are participating in leather products manufacturing. Most of the leather product manufacturing industry and some Small and Medium enterprise’s (SME’s) in the country are using leather cutting machines in order to cut leather goods or garment parts. Most of the industry and SMEs are using imported cutting board made of plastics and rubbers. However, these cutting boards are expensive.   This research aimed at developing a cutting board made from HDPE (High-Density Polyethylene) plastic waste as main material, calcium carbonate as a filler and glass fiber as a reinforcing material. Primary and secondary data gathering techniques were applied simultaneously. Primary data were collected through interview and field observation. Secondary data was gathered by reviewing different literature. The cutting board developed through collecting HDPE plastic waste, washing, shredding and melting the shredded plastic with filler and reinforcing material. The melted plastic poured in to cutting board mold and cooled. The developed cutting board was compared with HDPE cutting board available in the local market. The developed board showed relative compression and hardness properties with the HDPE cutting board available in the market. In the cost analysis, the developed cutting board is cheaper than the cutting board which available in the market. However, the cutting board in the market has better surface texture and quality than the developed cutting board. Melting HDPE plastic waste using metal or clay cooking pots and charcoal fire is a tedious task and smoke from the fire will cause human health problem and will affect environment. Consequently, manual plastic melting method is not feasible for mass production, because it is difficult to control the amount of heat (charcoal fire) during melting process. Based on this the authors recommend using machine based plastic melting and molding during HDPE and related plastic recycling.


Author(s):  
Ricardo Tournier ◽  
Fernando Lado

An appropriate tear strength is one of the main properties that concern customers and it is also a significant source of claims. The authors make a review of the production process, focusing on each step that can either damage the natural strength of collagen fibers or improve them and therefore, the leather. Although the authors’ experience is in bovine hides, the general concepts presented in this paper may be applied to other types of hides and skins. The aim of this work is to transfer field tannery experiences collected over 40 years of activity in different tanneries, to colleagues that are looking for world class leather production.


Author(s):  
Wenjun Long ◽  
Liangqiong Peng ◽  
Xiaofeng Jiang ◽  
Faming He ◽  
Wenhua Zhang

The release of chromium from leather inevitably results in potential risks and this study is conducted to investigate the long-term releasing behavior. The leaching tests proceed using water at solid to liquid ratio of 1:20 and rotational speed 60 r/min for 240 hours to simulate the release of chrome leather under natural conditions. The experimental data successfully fit with the Pseudo-second-order equation, Elovich equation, and Weber-Morris model, indicating the long-term leaching behavior of chromium in heterogeneous leather is controlled by liquid-solid film, while the interparticle and intraparticle diffusion also play important roles. The leachable chromium accounts for 2.8-4.5% total chromium in leather and increases with temperature. The Three-compartment model depicts the releasing process as rapid, slow, and very slow stages, and temperature mainly affected the very slow stage. The amount of released chromium in rapid and slow stages slightly increases with temperature, which could be used to assess the hazard of chrome leather.


Author(s):  
Venkatasubramanian Sivakumar

Process Safety and Occupational health (PSOH) aspects in process industries are essential and need more consideration along with development in manufacturing and processing. In this regard, PSOH aspects are essential for the leather industry in order to prevent health hazards associated with it and improve upon adequate measures. Better safeguards and practices are necessary in PSOH for the benefit of not only for people working in the industry but for the environment at large. The situation is significant wherever hazardous chemicals or chemicals which could lead to compromise on safety in the workplace are involved.  The degree of toxicity or hazard and exposure limit associated for some of them, inside factory premises are of major concern. In addition to the chemicals, other aspects such as dusts, noise levels, lighting, ergonomics, ventilation, personal safety and hygiene are worth considering. As mentioned above, the present paper analyzes various aspects of PSOH in leather process industries as a holistic approach.


Author(s):  
Zhikun Chen ◽  
Tao Luo ◽  
Xu Zhang ◽  
Biyu Peng ◽  
Chunxiao Zhang

Leather made with soybean phospholipid fatliquors is prone to problems such as yellowing, elevated hexavalent chromium content, and undesirable odor. In this study, the aforementioned typical defects of soybean phospholipid fatliquors were investigated in respect to the main components, the antioxidants and the unsaturation degree of the natural soybean phospholipid. The results showed that the oxidation of soybean phospholipid is the primary source for its yellowing, elevated hexavalent chromium content, and undesirable odor. The volatile aldehydes produced by lipid oxidative rancidity are the main components of the undesirable odor. The purification of natural soybean phospholipid through removing the non-phospholipid components cannot solve the problems caused by oxidation of phospholipid. Furthermore, as a typical natural antioxidant existing in natural soybean phospholipid, tocopherols can restrain the oxidation of phospholipid to a certain degree, however, the dissolving out and destruction of tocopherols at high temperature in the phospholipid purification process can lead to more obviously oxidation of phospholipids. Additionally, the oxidation defects of phospholipid cannot be completely resolved by adding extra tocopherols, even at high dosages. The research finds that the defects of soybean phospholipid fatliquors can be thoroughly solved by increasing the saturation degree of lipid through addition reaction, the suggested iodine value of phospholipid products is lower than 20 g I2/100 g.


Author(s):  
M. Sathish ◽  
D. Seeniammal ◽  
R. Poornima ◽  
J. Raghava Rao

Antimicrobial agents have been used in leather manufacturing to prevent leather products from microbial contamination. In this work, the antifungal activity of green solvent such as propylene carbonate was investigated against the mixed culture of fungi isolated from wet-blue using broth dilution/well diffusion. A concentration of 5% and above (propylene carbonate) showed effective antifungal activity against the mixed culture of fungi and the efficiency of propylene carbonate on the mixed culture increased with increasing concentration/volume. Propylene carbonate exhibited fungistatic activity against the mixed culture of fungi but it lost its activity after a certain period and fungal growth was observed again.  It was also found that 2% propylene carbonate in chrome tanning process effectively inhibited the fungal growth and the wet-blue can be preserved up to 30 days without any fungal attack.


Sign in / Sign up

Export Citation Format

Share Document