scholarly journals Pengaruh Penambahan Fly Ash Terhadap Perilaku Teknis Tanah Ekspansif di Daerah Selimau Kabupaten Bulungan

2021 ◽  
Vol 5 (1) ◽  
pp. 89-102
Author(s):  
Fuad Harwadi ◽  
Sepri Rantesalu ◽  
Nofrizal Nofrizal

Expansive soil is one of the problematic soils for civil engineering construction. The high swelling-shrinkage nature results in deformations that can damage the construction on it, therefore it is necessary to make improvements in expansive  soil. One of the most widely used methods of improving expansive soil is stabilization using chemical additives. In this research using coal waste material (fly ash) as stabilizer from PLTU Sekayan in Kaltara Province, so it can be said as environmentally friendly stabilization. The research objective was to determine changes in engineering behavior of expansive soil through compaction tests and CBR. The test results will be displayed in graphical form, namely by comparing the expansive soil that has not been stabilized (initial conditions) and the expansive soil that has been stabilized with fly ash at mixed variations of 20%, 30% and 40%, and has passed the curing period for 5, 15, and 30 days. From this research, it was found that the addition of a stabilizer (fly ash) could improve its engineering properties, and the optimum results were obtained at the addition of 40% fly ash and after 30 days of curing time. From the compaction test, it was found that the volume weight of dry soil (γdry) increased by 14.05% from 1.21 gr/cm3 to 1.38 gr/cm3 and the optimum water content (wopt) decreased by 38.12% from 31.19% to 19,3%. From CBR testing in the laboratory, there was a very large increase in the value of CBRDesign, namely 2192% from 0.72% to 16.5%

2020 ◽  
Vol 57 (9) ◽  
pp. 1356-1368 ◽  
Author(s):  
Hayder H. Abdullah ◽  
Mohamed A. Shahin ◽  
Megan L. Walske ◽  
Ali Karrech

Traditional soil stabilization by chemical additives such as cement and lime is a well-established technique for ground improvement of problematic soils. However, with the advantage of lower carbon emission and energy consumption, fly-ash-based geopolymer has recently become an attractive alternative to traditional stabilizers. Nevertheless, the literature lacks systemic approaches that assist engineers to apply this promising binder for soil stabilization, including the proper dosages required for an effective treatment. This paper introduces a systematic approach to assess the applicability of fly-ash-based geopolymer for stabilization of clay soils, through a comprehensive experimental program where engineered and natural clays were examined and evaluated, including soil compaction, plasticity, compressive strength, durability, pH level, and impact of pulverization. The results revealed several factors that influence the level of enhancement of geopolymer-treated clays, including the soil mineralogy, plasticity–activity properties, geopolymer concentration, curing time, and pulverization.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Tebogo Pilgrene Mashifana ◽  
Felix Ndubisi Okonta ◽  
Freeman Ntuli

The use of industrial waste as a potential stabilizer of marginal construction materials is cost effective. Phosphogypsum and fly ash are industrial wastes generated in very large quantities and readily available in South Africa. In order to explore the potential stabilization of vastly abundant expansive soil using larger quantity phosphogypsum waste as a potential modifier, composites with a mixture of lime-fly ash-phosphogypsum-basic oxygen furnace slag were developed. However because of the presence of radionuclide, it was necessary to treat the phosphogypsum waste with mild citric acid. The effect of the acid treatment on the geotechnical properties and microstructure of expansive soil stabilized with phosphogypsum-lime-fly ash-basic oxygen furnace slag (PG-LFA-BOF) paste was evaluated, in comparison with the untreated phosphogypsum. Expansive soil stabilized with acid-treated PG-LFA-BOF paste exhibited better geotechnical properties; in particular, the high strength mobilized was associated primarily with the formation of various calcium magnesium silicide and coating by calcium silicate hydrate and calcium aluminate hydrate. The soil microstructure was improved due to the formation of hydration products. The stabilized expansive soil met the specification for road subgrades and subbase. Stabilization of expansive soils with phosphogypsum, fly ash, and basic oxygen fly ash does not only improve engineering properties of soil but also provides a solution in relation to disposal and environmental pollution challenges.


2014 ◽  
Vol 587-589 ◽  
pp. 1328-1331
Author(s):  
Achmad Fauzi ◽  
Zuraidah Djauhari ◽  
Usama Juniansyah Fauzi

In general, clayey soil was used as material embankment for increasing road way level before road structure being constructed. Some types of clay are expansive soil, its have been contributing to pavement failures and subsequently causing increased annual maintenance expenditure of the road. The pavements design/redesign methods are found to be the primary cause of these failures. Thus, it is quite important to propose the Kuantan clay engineering properties chart for design criteria that can improve the embankment performance. Thus, it is quite important to investigate the Kuantan clay properties so that can improve the embankment performance. This paper was evaluated and utilized of the engineering properties of Kuantan Clayey as material embankment for roadway. The research were conducted soil engineering properties, standard compaction, four days soaked California Bearing Ratio (CBR) test to ten clayey samples from various sites in Kuantan. The 4 days soaked CBR of clayey samples were prepared at optimum water content. The chemical element was investigated by Integrated Electron Microscope and Energy-Dispersive X-Ray Spectroscopy (SEM-EDS) and linear regression analysis were used to anlyzing relation among engineering properties variables.


2020 ◽  
Vol 857 ◽  
pp. 374-382
Author(s):  
Omar K. Mohialdeen ◽  
Suhail I.A. Khattab ◽  
Kossay K. Al-Ahmady

The present research has been conducted to trace the various effects of Mosul city demolition waste materials (DMs), on the geotechnical properties of clay. The properties of the samples have already been investigated and evaluated. Moreover, cement has been added to upgrade these properties. Finally, the fine demolition has been added to a highly expansive soil selected from the site of the University of Mosul to reduce the swelling potential. In fact, the experimental work includes: The Abrasion, index and compaction properties, swelling and strength of stabilized and treated expansive soil. The laboratory tests include the testing of consistency limits, unconfined compressive strength (UCS), compaction (standard and modified), swelling, consolidation, and Abrasion test by Los Angeles Machine. The Results show that, increasing the old and new demolition (OD and ND) percentages lead to a decrease of liquid limit and plasticity index of clay, respectively. The increase in maximum γdry for the clay has been noticed when the OD and ND content has been added from 5 to 25%. A reduction of optimum water content (opt) for clay was optimized also by increasing the demolitions percentage to 25%. Also, the UCS strength values of the clay have been increased by increasing the demolition materials (DMs) percentage from 5 to 25%. The odometer characteristics, including the swelling and consolidation of DMs-clay mixtures, were controlled mainly by the type of the demolition. The final result indicates that the presence of old and new demolition waste could improve the clay engineering properties of the stabilized soil. Untreated and cement treated (OD) and (ND) materials could be successfully used as a base or sub-base for road.


The focus of this report is to study the feasibility of stabilizing the soil by using rice husk ash and coconut coir fibre, thus re-using the waste materials and providing an economical and eco-friendly method of soil stabilization. Soil stabilisation is a system to treat the soil to improve the performance of the soil. The capacity, rice husk ash as stabilizing additive to expansive soil is evaluated for the enhancing engineering properties of expansive soil. The Assessment includes the dedication of the swelling capacity, plastic limit, liquid limit, plasticity index, cohesion & compaction characteristics of the expansive soil. For the soil which lacks enough stability, various stabilization techniques can be adopted. Various percentage of rice husk ash and coconut coir Fibre (5% to 25%). the practices were executed on 5 proportions 5% ,10%,15%, 20% and 25% with the sample. The optimum value of the assessment is found at the proportion of 15% in table 3i.e.the value of unconfined compressive strength is 142kN/m2. Expansive clays are very problematic soils and not suitable for construction. Because of the change in volume when it exposes to water. Usually in rainy season, they absorb water and swells and in summer it shrinks.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prinya Chindaprasirt ◽  
Apichit Kampala ◽  
Pattawitchaya Daprom ◽  
Peerapong Jitsangiam ◽  
Suksun Horpibulsuk

Abstract Stabilization with cement is the most commonly used technique for the improvement of soil physical, mechanical, and engineering properties. This research reported on the properties of the rejuvenation for recycled soil cement with incorporation of fly ash (FA). The study showed that the specific gravity of Rejuvenated Soil Cement (RSC) decreased with increasing FA. The free swell ratio and linear shrinkage of RSC were significantly decreased with the increase in FA. The maximum dry unit weight of RSC increased with increasing FA up to the optimum FA content of 20 – 25 %. The optimum water content in compaction was relatively constant with the increase in FA. Particularly, the strength improvement in active zone of FA-RSC was influenced by several factors viz., compaction, packing, rehydration, and pozzolanic reaction. As a result, the unconfined compressive strength (UCS) of RSC increased with increase in FA and curing time. This research clearly showed that the rejuvenation of soil-cement with FA as additive was successful. It was also shown that the normalized UCSs of RSC at various curing times could be used to predict the UCSs at 7 and 28 days.


Author(s):  
Utkarsh Gawande ◽  
Shubham Kanhake ◽  
Arjun Lahane ◽  
Prasanna Naghbhide

Black cotton soil is a expansive soil. And mostly found in Vidarbha region of Maharashtra, this soil is highly unstable and it should be stabilize for carry out construction work. Materials like fly ash, rise husk, nylon fiber are used to make soil stable. Addition of such material will increase the physical, chemical and engineering properties of soil. Some of the properties which are improved are CBR value, shear strength, liquidity index, plasticity index, unconfined compressive strength (UCS) and bearing capacity, etc. The main objective of this study was to evaluate the effect of fly ash in stabilization of Black cotton soil. Mainly UCS and other properties of soil were calculated. The tests were conducted on Soil-Fly Ash mixtures, by increasing the Fly Ash percentage in Black cotton soil like 25%, 50%, 75%, and 100%, and then the soil was tested on Soil-Fly Ash - Fibre mixture by adding the fiber in increasing order like 0.5%, 1%, 1.5%. Results were obtained for mixed proportion of 75% soil and 25% fly ash which has unconfined compressive strength of 173 KN/m2. And by adding 1% of nylon fiber in same proportion of soil – fly ash the unconfined compressive strength increased to 243.12 KN/m2. Increase in UCS value can help in reducing the thickness of earthen roads and pavements and increase the bearing capacity and shear strength of soil. With analysis of results it was found that the fly ash along with nylon fiber has good potential to be used as an additive for improving engineering properties of expansive soil.


2016 ◽  
Vol 6 (2) ◽  
pp. 8
Author(s):  
DAHALE P.P. ◽  
NAGARNAIK P. B. ◽  
GAJBHIYE A.Y ◽  
◽  
◽  
...  
Keyword(s):  
Fly Ash ◽  

Sign in / Sign up

Export Citation Format

Share Document