scholarly journals Percepción remota y procesamiento de imágenes para la gestión de cultivos de caña de azúcar

Author(s):  
Hugo Rene Lárraga-Altamirano ◽  
Dalia Rosario Hernández-López ◽  
Ana María Piedad-Rubio ◽  
Jesús Antonio Amador-Soni

This research work shows that with the use of remote sensing technology it is possible to more effectively fulfill two of the purposes pursued by farmers in the field; manage crops more efficiently and include environmental care in decision-making. Specifically, remote sensing is applied in the context of precision agriculture through geographic information systems (GIS), unmanned aerial vehicles (UAV), multispectral sensors that capture the reflectance of the infrared band of the light spectrum (for interpretation of the biochemical state of the crop), global geopositioning systems (GPS), among others. This study limits the use of this technology to the processing of multispectral images obtained by aerial photogrammetry, and its subsequent treatment for the generation of orthoimages, the calculation of the NDVI vegetation index and the classification of land cover by clustering. Finally, the effect of classification with RGB and multispectral images is analyzed.

2019 ◽  
Vol 11 (20) ◽  
pp. 2456 ◽  
Author(s):  
Wanxue Zhu ◽  
Zhigang Sun ◽  
Yaohuan Huang ◽  
Jianbin Lai ◽  
Jing Li ◽  
...  

Leaf area index (LAI) is a key biophysical parameter for monitoring crop growth status, predicting crop yield, and quantifying crop variability in agronomic applications. Mapping the LAI at the field scale using multispectral cameras onboard unmanned aerial vehicles (UAVs) is a promising precision-agriculture application with specific requirements: The LAI retrieval method should be (1) robust so that crop LAI can be estimated with similar accuracy and (2) easy to use so that it can be applied to the adjustment of field management practices. In this study, three UAV remote-sensing missions (UAVs with Micasense RedEdge-M and Cubert S185 cameras) were carried out over six experimental plots from 2018 to 2019 to investigate the performance of reflectance-based lookup tables (LUTs) and vegetation index (VI)-based LUTs generated from the PROSAIL model for wheat LAI retrieval. The effects of the central wavelengths and bandwidths for the VI calculations on the LAI retrieval were further examined. We found that the VI-LUT strategy was more robust and accurate than the reflectance-LUT strategy. The differences in the LAI retrieval accuracy among the four VI-LUTs were small, although the improved modified chlorophyll absorption ratio index-lookup table (MCARI2-LUT) and normalized difference vegetation index-lookup table (NDVI-LUT) performed slightly better. We also found that both of the central wavelengths and bandwidths of the VIs had effects on the LAI retrieval. The VI-LUTs with optimized central wavelengths (red = 612 nm, near-infrared (NIR) = 756 nm) and narrow bandwidths (~4 nm) improved the wheat LAI retrieval accuracy (R2 ≥ 0.75). The results of this study provide an alternative method for retrieving crop LAI, which is robust and easy use for precision-agriculture applications and may be helpful for designing UAV multispectral cameras for agricultural monitoring.


Agriculture ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 246 ◽  
Author(s):  
Baabak Mamaghani ◽  
M. Grady Saunders ◽  
Carl Salvaggio

With the inception of small unmanned aircraft systems (sUAS), remotely sensed images have been captured much closer to the ground, which has meant better resolution and smaller ground sample distances (GSDs). This has provided the precision agriculture community with the ability to analyze individual plants, and in certain cases, individual leaves on those plants. This has also allowed for a dramatic increase in data acquisition for agricultural analysis. Because satellite and manned aircraft remote sensing data collections had larger GSDs, self-shadowing was not seen as an issue for agricultural remote sensing. However, sUAS are able to image these shadows which can cause issues in data analysis. This paper investigates the inherent reflectance variability of vegetation by analyzing six Coneflower plants, as a surrogate for other cash crops, across different variables. These plants were measured under different forecasts (cloudy and sunny), at different times (08:00 a.m., 09:00 a.m., 10:00 a.m., 11:00 a.m. and 12:00 p.m.), and at different GSDs (2, 4 and 8 cm) using a field portable spectroradiometer (ASD Field Spec). In addition, a leafclip spectrometer was utilized to measure individual leaves on each plant in a controlled lab environment. These spectra were analyzed to determine if there was any significant difference in the health of the various plants measured. Finally, a MicaSense RedEdge-3 multispectral camera was utilized to capture images of the plants every hour to analyze the variability produced by a sensor designed for agricultural remote sensing. The RedEdge-3 was held stationary at 1.5 m above the plants while collecting all images, which produced a GSD of 0.1 cm/pixel. To produce 2, 4, and 8 cm GSD, the MicaSense RedEdge-3 would need to be at an altitude of 30.5 m, 61 m and 122 m respectively. This study did not take background effects into consideration for either the ASD or MicaSense. Results showed that GSD produced a statistically significant difference (p < 0.001) in Normalized Difference Vegetation Index (NDVI, a commonly used metric to determine vegetation health), R 2 values demonstrated a low correlation between time of day and NDVI, and a one-way ANOVA test showed no statistically significant difference in the NDVI computed from the leafclip probe (p-value of 0.018). Ultimately, it was determined that the best condition for measuring vegetation reflectance was on cloudy days near noon. Sunny days produced self-shadowing on the plants which increased the variability of the measured reflectance values (higher standard deviations in all five RedEdge-3 channels), and the shadowing of the plants decreased as time approached noon. This high reflectance variability in the coneflower plants made it difficult to accurately measure the NDVI.


Agriculture ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 26
Author(s):  
Maggie Mulley ◽  
Lammert Kooistra ◽  
Laurens Bierens

Date palms are a valuable crop in areas with limited water availability such as the Middle East and sub-Saharan Africa, due to their hardiness in tough conditions. Increasing soil salinity and the spread of pests including the red palm weevil (RPW) are two examples of growing threats to date palm plantations. Separate studies have shown that thermal, multispectral, and hyperspectral remote sensing imagery can provide insight into the health of date palm plantations, but the added value of combining these datasets has not been investigated. The current study used available thermal, hyperspectral, Light Detection and Ranging (LiDAR) and visual Red-Green-Blue (RGB) images to investigate the possibilities of assessing date palm health at two “levels”; block level and individual tree level. Test blocks were defined into assumed healthy and unhealthy classes, and thermal and height data were extracted and compared. Due to distortions in the hyperspectral imagery, this data was only used for individual tree analysis; methods for identifying individual tree points using Normalized Difference Vegetation Index (NDVI) maps proved accurate. A total of 100 random test trees in one block were selected, and comparisons between hyperspectral, thermal and height data were made. For the vegetation index red-edge position (REP), the R-squared value in correlation with temperature was 0.313 and with height was 0.253. The vegetation index—the Vogelmann Red Edge Index (VOGI)—also has a relatively strong correlation value with both temperature (R2 = 0.227) and height (R2 = 0.213). Despite limited field data, the results of this study suggest that remote sensing data has added value in analyzing date palm plantations and could provide insight for precision agriculture techniques.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 940
Author(s):  
Rocío Ballesteros ◽  
Miguel A. Moreno ◽  
Fellype Barroso ◽  
Laura González-Gómez ◽  
José F. Ortega

The availability of a great amount of remote sensing data for precision agriculture purposes has set the question of which resolution and indices, derived from satellites or unmanned aerial vehicles (UAVs), offer the most accurate results to characterize vegetation. This study focused on assessing, comparing, and discussing the performances and limitations of satellite and UAV-based imagery in terms of canopy development, i.e., the leaf area index (LAI), and yield, i.e., the dry aboveground biomass (DAGB), for maize. Three commercial maize fields were studied over four seasons to obtain the LAI and DAGB. The normalized difference vegetation index (NDVI) and visible atmospherically resistant index (VARI) from satellite platforms (Landsat 5TM, 7 ETM+, 8OLI, and Sentinel 2A MSI) and the VARI and green canopy cover (GCC) from UAV imagery were compared. The remote sensing predictors in addition to the growing degree days (GDD) were assessed to estimate the LAI and DAGB using multilinear regression models (MRMs). For LAI estimation, better adjustments were obtained when predictors from the UAV platform were considered. The DAGB estimation revealed similar adjustments for both platforms, although the Landsat imagery offered slightly better adjustments. The results obtained in this study demonstrate the advantage of remote sensing platforms as a useful tool to estimate essential agronomic features.


2018 ◽  
Vol 10 (9) ◽  
pp. 1484 ◽  
Author(s):  
Liang Wan ◽  
Yijian Li ◽  
Haiyan Cen ◽  
Jiangpeng Zhu ◽  
Wenxin Yin ◽  
...  

Remote estimation of flower number in oilseed rape under different nitrogen (N) treatments is imperative in precision agriculture and field remote sensing, which can help to predict the yield of oilseed rape. In this study, an unmanned aerial vehicle (UAV) equipped with Red Green Blue (RGB) and multispectral cameras was used to acquire a series of field images at the flowering stage, and the flower number was manually counted as a reference. Images of the rape field were first classified using K-means method based on Commission Internationale de l’Éclairage (CIE) L*a*b* space, and the result showed that classified flower coverage area (FCA) possessed a high correlation with the flower number (r2 = 0.89). The relationships between ten commonly used vegetation indices (VIs) extracted from UAV-based RGB and multispectral images and the flower number were investigated, and the VIs of Normalized Green Red Difference Index (NGRDI), Red Green Ratio Index (RGRI) and Modified Green Red Vegetation Index (MGRVI) exhibited the highest correlation to the flower number with the absolute correlation coefficient (r) of 0.91. Random forest (RF) model was developed to predict the flower number, and a good performance was achieved with all UAV variables (r2 = 0.93 and RMSEP = 16.18), while the optimal subset regression (OSR) model was further proposed to simplify the RF model, and a better result with r2 = 0.95 and RMSEP = 14.13 was obtained with the variable combination of RGRI, normalized difference spectral index (NDSI (944, 758)) and FCA. Our findings suggest that combining VIs and image classification from UAV-based RGB and multispectral images possesses the potential of estimating flower number in oilseed rape.


2019 ◽  
Vol 12 (2) ◽  
pp. 26-40
Author(s):  
Sheriza Mohd Razali ◽  
Ahmad Ainuddin Nuruddin ◽  
Marryanna Lion

Abstract Mangroves critically require conservation activity due to human encroachment and environmental unsustainability. The forests must be conserving through monitoring activities with an application of remote sensing satellites. Recent high-resolution multispectral satellite was used to produce Normalized Difference Vegetation Index (NDVI) and Tasselled Cap transformation (TC) indices mapping for the area. Satellite Pour l’Observation de la Terre (SPOT) SPOT-6 was employed for ground truthing. The area was only a part of mangrove forest area of Tanjung Piai which estimated about 106 ha. Although, the relationship between the spectral indices and dendrometry parameters was weak, we found a very significant between NDVI (mean) and stem density (y=10.529x + 12.773) with R2=0.1579. The sites with NDVI calculated varied from 0.10 to 0.26 (P1 and P2), under the environmental stress due to sand deposition found was regard as unhealthy vegetation areas. Whereas, site P5 with NDVI (mean) 0.67 is due to far distance from risk wave’s zone, therefore having young/growing trees with large lush green cover was regard as healthy vegetation area. High greenness indicated in TC means, the bands respond to a combination of high absorption of chlorophyll in the visible bands and the high reflectance of leaf structures in the near-infrared band, which is characteristic of healthy green vegetation. Overall, our study showed our tested WV-2 image combined with ground data provided valuable information of mangrove health assessment for Tanjung Piai, Johor, Malay Peninsula.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5463
Author(s):  
Yuki Hamada ◽  
David Cook ◽  
Donald Bales

Despite an advanced ability to forecast ecosystem functions and climate at regional and global scales, little is known about relationships between local variations in water and carbon fluxes and large-scale phenomena. To enable data collection of local-scale ecosystem functions to support such investigations, we developed the EcoSpec system, a highly equipped remote sensing system that houses a hyperspectral radiometer (350–2500 nm) and five optical and infrared sensors in a compact tower. Its custom software controls the sequence and timing of movement of the sensors and system components and collects measurements at 12 locations around the tower. The data collected using the system was processed to remove sun-angle effects, and spectral vegetation indices computed from the data (i.e., the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Photochemical Reflectance Index (PRI), and Moisture Stress Index (MSI)) were compared with the fraction of photochemically active radiation (fPAR) and canopy temperature. The results showed that the NDVI, NDWI, and PRI were strongly correlated with fPAR; the MSI was correlated with canopy temperature at the diurnal scale. These correlations suggest that this type of near-surface remote sensing system would complement existing observatories to validate satellite remote sensing observations and link local and large-scale phenomena to improve our ability to forecast ecosystem functions and climate. The system is also relevant for precision agriculture to study crop growth, detect disease and pests, and compare traits of cultivars.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 457
Author(s):  
Rigas Giovos ◽  
Dimitrios Tassopoulos ◽  
Dionissios Kalivas ◽  
Nestor Lougkos ◽  
Anastasia Priovolou

One factor of precision agriculture is remote sensing, through which we can monitor vegetation health and condition. Much research has been conducted in the field of remote sensing and agriculture analyzing the applications, while the reviews gather the research on this field and examine different scientific methodologies. This work aims to gather the existing vegetation indices used in viticulture, which were calculated from imagery acquired by remote sensing platforms such as satellites, airplanes and UAVs. In this review we present the vegetation indices, the applications of these and the spatial distribution of the research on viticulture from the early 2000s. A total of 143 publications on viticulture were reviewed; 113 of them had used remote sensing methods to calculate vegetation indices, while the rejected ones have used proximal sensing methods. The findings show that the most used vegetation index is NDVI, while the most frequently appearing applications are monitoring and estimating vines water stress and delineation of management zones. More than half of the publications use multitemporal analysis and UAVs as the most used among remote sensing platforms. Spain and Italy are the countries with the most publications on viticulture with one-third of the publications referring to regional scale whereas the others to site-specific/vineyard scale. This paper reviews more than 90 vegetation indices that are used in viticulture in various applications and research topics, and categorized them depending on their application and the spectral bands that they are using. To summarize, this review is a guide for the applications of remote sensing and vegetation indices in precision viticulture and vineyard assessment.


2020 ◽  
Vol 13 (6) ◽  
pp. 2885
Author(s):  
Antônio Soares Barros ◽  
Lucas Menezes de Farias ◽  
Jefferson Luiz Alves Marinho

Dados de sensoriamento remoto são fundamentais em pesquisas voltadas a estudos do comportamento da vegetação, assim como no monitoramento de fenômenos meteorológicos e ambientais. Nesse contexto, surgem mecanismos capazes de auxiliar estudos que constatem o que acontece no meio ambiente, em que o Índice de Vegetação por Diferença Normalizada (NDVI) é uma dessas ferramentas. O monitoramento preciso e oportuno das características da superfície da Terra fornece a base para uma melhor compreensão das interações e relações entre os fenômenos humanos e naturais visando um melhor uso e gerenciamento de recursos. Em função disso, o objetivo desse artigo é realizar a geração de um mapa temático da situação da cobertura vegetal do município de Juazeiro do Norte-CE a partir do (NDVI). Para a realização deste trabalho foi utilizado o Sistema de Informação Geográfica (SIG QGIS), versão 2.18. O NDVI foi calculado a partir de imagens de satélites obtidas de forma gratuita no site Earth Explorer. Destaca-se como resultados que o NDVI máximo foi 0,60901. Esse valor próximo a 1 (um) indica uma boa quantidade de cobertura vegetal densa. Dessa forma, a aplicação do NDVI foi relevante para identificar como se encontra a atual situação do município em relação à sua vegetação, pois esse índice pode auxiliar nas tomadas de decisões por parte da gestão pública no planejamento ambiental, uma vez que funciona como indicador de áreas verdes. Portanto, essa técnica pode melhorar a detecção de alterações na vegetação em estudos futuros.Application of the Normalized Difference Vegetation Index (NDVI) in the Characterization of the Vegetative Cover of Juazeiro Do Norte – CEA B S T R A C TRemote sensing data are fundamental in research focused on studies of vegetation behavior, as well as in the monitoring of meteorological and environmental phenomena. In this context, the Normalized Difference Vegetation Index (NDVI) has been widely used for monitoring and evaluating vegetation, as it is one of the first analytical products of remote sensing used to simplify the complexities of multispectral images. Thus, accurate and timely monitoring of earth's surface characteristics provides the basis for a better understanding of the interactions and relationships between human and natural phenomena aiming at better use and resource management. In this sense, the objective of this article is to generate a thematic map of the situation of the vegetation cover of the municipality of Juazeiro do Norte-CE from the (NDVI). The Geographic Information System (SIG QGIS), version 2.18, was used to carry out this work. NDVI was calculated from satellite images obtained free of charge on the Earth Explorer website. It is noteworthy as results that the maximum NDVI was 0.60901. This value close to 1 (one) indicates a good amount of dense vegetation cover. Thus, the application of NDVI was relevant to identify how the current situation of the municipality is found in relation to its vegetation, because this index can help in decision-making by public management in environmental planning, since it acts as an indicator of green areas. Therefore, this technique may improve the detection of changes in vegetation in future studies.Keywords: Vegetation Index, Remote sensing, Vegetable Cover.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Piekarczyk

AbstractWith increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.


Sign in / Sign up

Export Citation Format

Share Document