scholarly journals Human evaluation of three machine translation systems: from quality to attitudes by professional translators

Author(s):  
Anna Fernández Torné ◽  
Anna Matamala

This article aims to compare three machine translation systems with a focus on human evaluation. The systems under analysis are a domain-adapted statistical machine translation system, a domain-adapted neural machine translation system and a generic machine translation system. The comparison is carried out on translation from Spanish into German with industrial documentation of machine tool components and processes. The focus is on the human evaluation of the machine translation output, specifically on: fluency, adequacy and ranking at the segment level; fluency, adequacy, need for post-editing, ease of post-editing, and mental effort required in post-editing at the document level; productivity (post-editing speed and post-editing effort) and attitudes. Emphasis is placed on human factors in the evaluation process.

2016 ◽  
Vol 5 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


2020 ◽  
pp. 1137-1154
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


2019 ◽  
Vol 28 (3) ◽  
pp. 455-464 ◽  
Author(s):  
M. Anand Kumar ◽  
B. Premjith ◽  
Shivkaran Singh ◽  
S. Rajendran ◽  
K. P. Soman

Abstract In recent years, the multilingual content over the internet has grown exponentially together with the evolution of the internet. The usage of multilingual content is excluded from the regional language users because of the language barrier. So, machine translation between languages is the only possible solution to make these contents available for regional language users. Machine translation is the process of translating a text from one language to another. The machine translation system has been investigated well already in English and other European languages. However, it is still a nascent stage for Indian languages. This paper presents an overview of the Machine Translation in Indian Languages shared task conducted on September 7–8, 2017, at Amrita Vishwa Vidyapeetham, Coimbatore, India. This machine translation shared task in Indian languages is mainly focused on the development of English-Tamil, English-Hindi, English-Malayalam and English-Punjabi language pairs. This shared task aims at the following objectives: (a) to examine the state-of-the-art machine translation systems when translating from English to Indian languages; (b) to investigate the challenges faced in translating between English to Indian languages; (c) to create an open-source parallel corpus for Indian languages, which is lacking. Evaluating machine translation output is another challenging task especially for Indian languages. In this shared task, we have evaluated the participant’s outputs with the help of human annotators. As far as we know, this is the first shared task which depends completely on the human evaluation.


2020 ◽  
Vol 44 (1) ◽  
pp. 33-50
Author(s):  
Ivan Dunđer

Machine translation is increasingly becoming a hot research topic in information and communication sciences, computer science and computational linguistics, due to the fact that it enables communication and transferring of meaning across different languages. As the Croatian language can be considered low-resourced in terms of available services and technology, development of new domain-specific machine translation systems is important, especially due to raised interest and needs of industry, academia and everyday users. Machine translation is not perfect, but it is crucial to assure acceptable quality, which is purpose-dependent. In this research, different statistical machine translation systems were built – but one system utilized domain adaptation in particular, with the intention of boosting the output of machine translation. Afterwards, extensive evaluation has been performed – in form of applying several automatic quality metrics and human evaluation with focus on various aspects. Evaluation is done in order to assess the quality of specific machine-translated text.


Author(s):  
Ignatius Ikechukwu Ayogu ◽  
Adebayo Olusola Adetunmbi ◽  
Bolanle Adefowoke Ojokoh

The global demand for translation and translation tools currently surpasses the capacity of available solutions. Besides, there is no one-solution-fits-all, off-the-shelf solution for all languages. Thus, the need and urgency to increase the scale of research for the development of translation tools and devices continue to grow, especially for languages suffering under the pressure of globalisation. This paper discusses our experiments on translation systems between English and two Nigerian languages: Igbo and Yorùbá. The study is setup to build parallel corpora, train and experiment English-to-Igbo, (), English-to-Yorùbá, () and Igbo-to-Yorùbá, () phrase-based statistical machine translation systems. The systems were trained on parallel corpora that were created for each language pair using text from the religious domain in the course of this research. A BLEU score of 30.04, 29.01 and 18.72 respectively was recorded for the English-to-Igbo, English-to-Yorùbá and Igbo-to-Yorùbá MT systems. An error analysis of the systems’ outputs was conducted using a linguistically motivated MT error analysis approach and it showed that errors occurred mostly at the lexical, grammatical and semantic levels. While the study reveals the potentials of our corpora, it also shows that the size of the corpora is yet an issue that requires further attention. Thus an important target in the immediate future is to increase the quantity and quality of the data.  


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Bharathi Raja Chakravarthi ◽  
Priya Rani ◽  
Mihael Arcan ◽  
John P. McCrae

AbstractMachine translation is one of the applications of natural language processing which has been explored in different languages. Recently researchers started paying attention towards machine translation for resource-poor languages and closely related languages. A widespread and underlying problem for these machine translation systems is the linguistic difference and variation in orthographic conventions which causes many issues to traditional approaches. Two languages written in two different orthographies are not easily comparable but orthographic information can also be used to improve the machine translation system. This article offers a survey of research regarding orthography’s influence on machine translation of under-resourced languages. It introduces under-resourced languages in terms of machine translation and how orthographic information can be utilised to improve machine translation. We describe previous work in this area, discussing what underlying assumptions were made, and showing how orthographic knowledge improves the performance of machine translation of under-resourced languages. We discuss different types of machine translation and demonstrate a recent trend that seeks to link orthographic information with well-established machine translation methods. Considerable attention is given to current efforts using cognate information at different levels of machine translation and the lessons that can be drawn from this. Additionally, multilingual neural machine translation of closely related languages is given a particular focus in this survey. This article ends with a discussion of the way forward in machine translation with orthographic information, focusing on multilingual settings and bilingual lexicon induction.


Author(s):  
Pavlo P. Maslianko ◽  
Yevhenii P. Sielskyi

Background. There are not many machine translation companies on the market whose products are in demand. These are, for example, free and commercial products such as “GoogleTranslate”, “DeepLTranslator”, “ModernMT”, “Apertium”, “Trident”, to name a few. To implement a more efficient and productive process for developing high-quality neural machine translation systems (NMTS), appropriate scientifically based methods of NMTS engineering are needed in order to get a high-quality and competitive product as quickly as possible. Objective. The purpose of this article is to apply the Eriksson-Penker business profile to the development and formalization of a method for system engineering of NMTS. Methods. The idea behind the neural machine translation system engineering method is to apply the Eriksson-Penker system engineering methodology and business profile to formalize an ordered way to develop NMT systems. Results. The method of developing NMT systems based on the use of system engineering techniques consists of three main stages. At the first stage, the structure of the NMT system is modelled in the form of an Eriksson-Penker business profile. At the second stage, a set of processes is determined that is specific to the class of Data Science systems, and the international CRISP-DM standard. At the third stage, verification and validation of the developed NMTS is carried out. Conclusions. The article proposes a method of system engineering of NMTS based on the modified Erickson-Penker business profile representation of the system at the meta-level, as well as international process standards of Data Science and Data Mining. The effectiveness of using this method was studied on the example of developing a bidirectional English-Ukrainian NMTS EUMT (English-Ukrainian Machine Translator) and it was found that the EUMT system is at least as good as the quality of English-Ukrainian translation of the popular Google Translate translator. The full version code of the EUMT system is published on the GitHub platform and is available at: https://github.com/EugeneSel/EUMT.


2018 ◽  
Vol 7 (2) ◽  
pp. 690
Author(s):  
Kamal Deep ◽  
Ajit Kumar ◽  
Vishal Goyal

This paper describes the creation process and statistics of Punjabi English (PunEng) parallel corpus. Parallel corpus is the main requirement to develop statistical machine translation as well as neural machine translation. Until now, we do not have any availability of PunEng parallel corpus. In this paper, we have shown difficulties and intensive labor to develop parallel corpus. Methods used for collecting data and the results are discussed, errors during the process of collecting data and how to handle these errors will be described.


2016 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Avinash Singh ◽  
Asmeet Kour ◽  
Shubhnandan S. Jamwal

The objective behind this paper is to analyze the English-Dogri parallel corpus translation. Machine translation is the translation from one language into another language. Machine translation is the biggest application of the Natural Language Processing (NLP). Moses is statistical machine translation system allow to train translation models for any language pair. We have developed translation system using Statistical based approach which helps in translating English to Dogri and vice versa. The parallel corpus consists of 98,973 sentences. The system gives accuracy of 80% in translating English to Dogri and the system gives accuracy of 87% in translating Dogri to English system.


Sign in / Sign up

Export Citation Format

Share Document