scholarly journals Developing Statistical Machine Translation System for English and Nigerian Languages

Author(s):  
Ignatius Ikechukwu Ayogu ◽  
Adebayo Olusola Adetunmbi ◽  
Bolanle Adefowoke Ojokoh

The global demand for translation and translation tools currently surpasses the capacity of available solutions. Besides, there is no one-solution-fits-all, off-the-shelf solution for all languages. Thus, the need and urgency to increase the scale of research for the development of translation tools and devices continue to grow, especially for languages suffering under the pressure of globalisation. This paper discusses our experiments on translation systems between English and two Nigerian languages: Igbo and Yorùbá. The study is setup to build parallel corpora, train and experiment English-to-Igbo, (), English-to-Yorùbá, () and Igbo-to-Yorùbá, () phrase-based statistical machine translation systems. The systems were trained on parallel corpora that were created for each language pair using text from the religious domain in the course of this research. A BLEU score of 30.04, 29.01 and 18.72 respectively was recorded for the English-to-Igbo, English-to-Yorùbá and Igbo-to-Yorùbá MT systems. An error analysis of the systems’ outputs was conducted using a linguistically motivated MT error analysis approach and it showed that errors occurred mostly at the lexical, grammatical and semantic levels. While the study reveals the potentials of our corpora, it also shows that the size of the corpora is yet an issue that requires further attention. Thus an important target in the immediate future is to increase the quantity and quality of the data.  

2012 ◽  
Vol 18 (4) ◽  
pp. 549-573 ◽  
Author(s):  
YULIA TSVETKOV ◽  
SHULY WINTNER

AbstractWe present a general, novel methodology for extracting multi-word expressions (MWEs) of various types, along with their translations, from small, word-aligned parallel corpora. Unlike existing approaches, we focus on misalignments; these typically indicate expressions in the source language that are translated to the target in a non-compositional way. We introduce a simple algorithm that proposes MWE candidates based on such misalignments, relying on 1:1 alignments as anchors that delimit the search space. We use a large monolingual corpus to rank and filter these candidates. Evaluation of the quality of the extraction algorithm reveals significant improvements over naïve alignment-based methods. The extracted MWEs, with their translations, are used in the training of a statistical machine translation system, showing a small but significant improvement in its performance.


Author(s):  
A.V. Kozina ◽  
Yu.S. Belov

Automatically assessing the quality of machine translation is an important yet challenging task for machine translation research. Translation quality assessment is understood as predicting translation quality without reference to the source text. Translation quality depends on the specific machine translation system and often requires post-editing. Manual editing is a long and expensive process. Since the need to quickly determine the quality of translation increases, its automation is required. In this paper, we propose a quality assessment method based on ensemble supervised machine learning methods. The bilingual corpus WMT 2019 for the EnglishRussian language pair was used as data. The text data volume is 17089 sentences, 85% of the data was used for training, and 15% for testing the model. Linguistic functions extracted from the text in the source and target languages were used as features for training the system, since it is these characteristics that can most accurately characterize the translation in terms of quality. The following tools were used for feature extraction: a free language modeling tool based on SRILM and a Stanford POS Tagger parts of speech tagger. Before training the system, the text was preprocessed. The model was trained using three regression methods: Bagging, Extra Tree, and Random Forest. The algorithms were implemented in the Python programming language using the Scikit learn library. The parameters of the random forest method have been optimized using a grid search. The performance of the model was assessed by the mean absolute error MAE and the root mean square error RMSE, as well as by the Pearsоn coefficient, which determines the correlation with human judgment. Testing was carried out using three machine translation systems: Google and Bing neural systems, Mouses statistical machine translation systems based on phrases and based on syntax. Based on the results of the work, the method of additional trees showed itself best. In addition, for all categories of indicators under consideration, the best results are achieved using the Google machine translation system. The developed method showed good results close to human judgment. The system can be used for further research in the task of assessing the quality of translation.


2016 ◽  
Vol 5 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


2005 ◽  
Vol 31 (4) ◽  
pp. 477-504 ◽  
Author(s):  
Dragos Stefan Munteanu ◽  
Daniel Marcu

We present a novel method for discovering parallel sentences in comparable, non-parallel corpora. We train a maximum entropy classifier that, given a pair of sentences, can reliably determine whether or not they are translations of each other. Using this approach, we extract parallel data from large Chinese, Arabic, and English non-parallel newspaper corpora. We evaluate the quality of the extracted data by showing that it improves the performance of a state-of-the-art statistical machine translation system. We also show that a good-quality MT system can be built from scratch by starting with a very small parallel corpus (100,000 words) and exploiting a large non-parallel corpus. Thus, our method can be applied with great benefit to language pairs for which only scarce resources are available.


2016 ◽  
Vol 13 ◽  
Author(s):  
Sharid Loáiciga ◽  
Cristina Grisot

This paper proposes a method for improving the results of a statistical Machine Translation system using boundedness, a pragmatic component of the verbal phrase’s lexical aspect. First, the paper presents manual and automatic annotation experiments for lexical aspect in English-French parallel corpora. It will be shown that this aspectual property is identified and classified with ease both by humans and by automatic systems. Second, Statistical Machine Translation experiments using the boundedness annotations are presented. These experiments show that the information regarding lexical aspect is useful to improve the output of a Machine Translation system in terms of better choices of verbal tenses in the target language, as well as better lexical choices. Ultimately, this work aims at providing a method for the automatic annotation of data with boundedness information and at contributing to Machine Translation by taking into account linguistic data.


Author(s):  
Anna Fernández Torné ◽  
Anna Matamala

This article aims to compare three machine translation systems with a focus on human evaluation. The systems under analysis are a domain-adapted statistical machine translation system, a domain-adapted neural machine translation system and a generic machine translation system. The comparison is carried out on translation from Spanish into German with industrial documentation of machine tool components and processes. The focus is on the human evaluation of the machine translation output, specifically on: fluency, adequacy and ranking at the segment level; fluency, adequacy, need for post-editing, ease of post-editing, and mental effort required in post-editing at the document level; productivity (post-editing speed and post-editing effort) and attitudes. Emphasis is placed on human factors in the evaluation process.


2013 ◽  
Vol 39 (4) ◽  
pp. 999-1023 ◽  
Author(s):  
Gennadi Lembersky ◽  
Noam Ordan ◽  
Shuly Wintner

Translation models used for statistical machine translation are compiled from parallel corpora that are manually translated. The common assumption is that parallel texts are symmetrical: The direction of translation is deemed irrelevant and is consequently ignored. Much research in Translation Studies indicates that the direction of translation matters, however, as translated language (translationese) has many unique properties. It has already been shown that phrase tables constructed from parallel corpora translated in the same direction as the translation task outperform those constructed from corpora translated in the opposite direction. We reconfirm that this is indeed the case, but emphasize the importance of also using texts translated in the “wrong” direction. We take advantage of information pertaining to the direction of translation in constructing phrase tables by adapting the translation model to the special properties of translationese. We explore two adaptation techniques: First, we create a mixture model by interpolating phrase tables trained on texts translated in the “right” and the “wrong” directions. The weights for the interpolation are determined by minimizing perplexity. Second, we define entropy-based measures that estimate the correspondence of target-language phrases to translationese, thereby eliminating the need to annotate the parallel corpus with information pertaining to the direction of translation. We show that incorporating these measures as features in the phrase tables of statistical machine translation systems results in consistent, statistically significant improvement in the quality of the translation.


2020 ◽  
Vol 44 (1) ◽  
pp. 33-50
Author(s):  
Ivan Dunđer

Machine translation is increasingly becoming a hot research topic in information and communication sciences, computer science and computational linguistics, due to the fact that it enables communication and transferring of meaning across different languages. As the Croatian language can be considered low-resourced in terms of available services and technology, development of new domain-specific machine translation systems is important, especially due to raised interest and needs of industry, academia and everyday users. Machine translation is not perfect, but it is crucial to assure acceptable quality, which is purpose-dependent. In this research, different statistical machine translation systems were built – but one system utilized domain adaptation in particular, with the intention of boosting the output of machine translation. Afterwards, extensive evaluation has been performed – in form of applying several automatic quality metrics and human evaluation with focus on various aspects. Evaluation is done in order to assess the quality of specific machine-translated text.


Author(s):  
K. Jaya ◽  
Deepa Gupta

Even though lot of Statistical Machine Translation(SMT) research work is happening for English-Hindi language pair, there is no effort done to standardize the dataset. Each of the research work uses different dataset, different parameters and different number of sentences during various phases of translation resulting in varied translation output. So comparing  these models, understand the result of these models, to get insight into corpus behavior for these models, regenerating the result of these research work  becomes tedious. This necessitates the need for standardization of dataset and to identify the common parameter for the development of model.  The main contribution of this paper is to discuss an approach to standardize the dataset and to identify the best parameter which in combination gives best performance. It also investigates a novel corpus augmentation approach to improve the translation quality of English-Hindi bidirectional statistical machine translation system. This model works well for the scarce resource without incorporating the external parallel data corpus of the underlying language.  This experiment is carried out using Open Source phrase-based toolkit Moses. Indian Languages Corpora Initiative (ILCI) Hindi-English tourism corpus is used.  With limited dataset, considerable improvement is achieved using the corpus augmentation approach for the English-Hindi bidirectional SMT system.


Author(s):  
K. Jaya ◽  
Deepa Gupta

Even though lot of Statistical Machine Translation(SMT) research work is happening for English-Hindi language pair, there is no effort done to standardize the dataset. Each of the research work uses different dataset, different parameters and different number of sentences during various phases of translation resulting in varied translation output. So comparing  these models, understand the result of these models, to get insight into corpus behavior for these models, regenerating the result of these research work  becomes tedious. This necessitates the need for standardization of dataset and to identify the common parameter for the development of model.  The main contribution of this paper is to discuss an approach to standardize the dataset and to identify the best parameter which in combination gives best performance. It also investigates a novel corpus augmentation approach to improve the translation quality of English-Hindi bidirectional statistical machine translation system. This model works well for the scarce resource without incorporating the external parallel data corpus of the underlying language.  This experiment is carried out using Open Source phrase-based toolkit Moses. Indian Languages Corpora Initiative (ILCI) Hindi-English tourism corpus is used.  With limited dataset, considerable improvement is achieved using the corpus augmentation approach for the English-Hindi bidirectional SMT system.


Sign in / Sign up

Export Citation Format

Share Document